Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Related tags

Deep LearningSMFI
Overview

Fight Detection from Still Images in the Wild

Detecting fights from still images is an important task required to limit the distribution of social media images with fight content, in order to prevent the negative effects of such violent media items. For this reason, in this study we addressed the problem of fight detection from still images collected from web and social media. We explored how well one can detect fights from just a single still image.

In this context, a new image dataset on the fight recognition from still images task is collected named Social Media Fight Images (SMFI) dataset. The dataset samples gathered from social media (Twitter and Google) and NTU-CCTV Fights 1 dataset. Since the main concern is recognizing fight actions in the wild, real-world scenarios are included in the dataset where a mass amount of them are spontaneous recordings of fight actions. Using different keywords while crawling the data, the regional diversity is also maintained since the social media uploadings are mostly regional where users share the content in their own language. Some example images from the dataset are given below:

samples

Both fight and non-fight samples are collected from the same domain where the non-fight samples are also content likely to be shared on social media. Hard non-fight samples are also included in the dataset which displays the actions that might be misinterpreted as fight such as hugging, throwing ball, dancing and more. This prevents the dataset bias, so that the trained models focuses on the actions and the performers on the scene instead of benefiting other characteristics such as motion blur. The distribution of the dataset samples among each class and source is given below:

Twitter Google NTU CCTV-Fights Total
Fight 2247 162 330 2739
Non-fight 2642 146 164 2952
Total 4889 308 494 5691

Due to the copyright issues the dataset images are not shared directly and the links to the images / videos are shared. As the dataset samples might be deleted in time by the users or the authorities, the size of the dataset is subject to change.

Dataset Format

The dataset samples are shared through a CSV file where the columns are as follows:

  • Image ID: Unique ID assigned to each image.
  • Class: class of the image as fight / nofight
  • Source: The source of the images or videos as twitter_img / twitter_video / google / ntu-cctv
  • URL: The link for the images / videos.
    • For Twitter and Google data, image and video URLs are shared.
    • For the NTU CCTV-Fights data, the path to the original video is shared.
  • Frame number: If the image is extracted from a video, this column indicates the number of frame within the video.
    • For Twitter videos, the frame number is the number of frame (0-9) out of 10 uniformly sampled frames from each video.
    • For NTU CCTV-Fight videos, the frame number is the number of frame (0-N) out of all frames (N) extracted from each video.

In order to retrieve the dataset, you should first download the NTU CCTV-Fights here.

Citation

TBA

References

1 Mauricio Perez, Alex C. Kot, Anderson Rocha, “Detection of Real-world Fights in Surveillance Videos”, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019

Owner
Şeymanur Aktı
Şeymanur Aktı
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Vikrant Deshpande 1 Nov 17, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022