Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

Overview

IGNN

Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution"   [paper] [supp]

Prepare datasets

1 Download training dataset and test datasets from here.

2 Crop training dataset DIV2K to sub-images.

python ./datasets/prepare_DIV2K_subimages.py

Remember to modify the 'input_folder' and 'save_folder' in the above script.

Dependencies and Installation

The denoising code is tested with Python 3.7, PyTorch 1.1.0 and Cuda 9.0 but is likely to run with newer versions of PyTorch and Cuda.

1 Create conda environment.

conda create --name ignn
conda activate ignn
conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=9.0 -c pytorch

2 Install PyInn.

pip install git+https://github.com/szagoruyko/[email protected]

3 Install matmul_cuda.

bash install.sh

4 Install other dependencies.

pip install -r requirements.txt

Pretrained Models

Downloading the pretrained models from this link and put them into ./ckpt

Training

Use the following command to train the network:

python runner.py
        --gpu [gpu_id]\
        --phase 'train'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --out [output path]

Use the following command to resume training the network:

python runner.py 
        --gpu [gpu_id]\
        --phase 'resume'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --out [output path]

You can also use the following simple command with different settings in config.py:

python runner.py

Testing

Use the following command to test the network on benchmark datasets (w/ GT):

python runner.py \
        --gpu [gpu_id]\
        --phase 'test'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --testname [Set5, Set14, BSD100, Urban100, Manga109]\
        --out [output path]

Use the following command to test the network on your demo images (w/o GT):

python runner.py \
        --gpu [gpu_id]\
        --phase 'test'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --demopath [test folder path]\
        --testname 'Demo'\
        --out [output path]

You can also use the following simple command with different settings in config.py:

python runner.py

Visual Results (x4)

For visual comparison on the 5 benchmarks, you can download our IGNN results from here.

Some examples

image

image

Citation

If you find our work useful for your research, please consider citing the following papers :)

@inproceedings{zhou2020cross,
title={Cross-scale internal graph neural network for image super-resolution},
author={Zhou, Shangchen and Zhang, Jiawei and Zuo, Wangmeng and Loy, Chen Change},
booktitle={Advances in Neural Information Processing Systems},
year={2020}
}

Contact

We are glad to hear from you. If you have any questions, please feel free to contact [email protected].

License

This project is open sourced under MIT license.

Owner
Shangchen Zhou
Ph.D. student at [email protected].
Shangchen Zhou
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022