Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

Related tags

Deep LearningRecycleD
Overview

RecycleD

Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM Multimedia 2021 Brave New Ideas (BNI) Track.

Brief Introduction

The core idea of RecycleD is to reuse the pre-trained discriminator in SR WGAN to directly assess the image perceptual quality.

overall_pipeline

In addition, we use the Salient Object Detection (SOD) networks and Image Residuals to produce weight matrices to improve the PatchGAN discriminator.

Requirements

  • Python 3.6
  • NumPy 1.17
  • PyTorch 1.2
  • torchvision 0.4
  • tensorboardX 1.4
  • scikit-image 0.16
  • Pillow 5.2
  • OpenCV-Python 3.4
  • SciPy 1.4

Datasets

For Training

We adopt the commonly used DIV2K as the training set to train SR WGAN.
For training, we use the HR images in "DIV2K/DIV2K_train_HR/", and LR images in "DIV2K/DIV2K_train_LR_bicubic/X4/". (The upscale factor is x4.)
For validation, we use the Set5 & Set14 datasets. You can download these benchmark datasets from LapSRN project page or My Baidu disk with password srbm.

For Test

We use PIPAL, Ma's dataset, BAPPS-Superres as super-resolved image quality datasets.
We use LIVE-itW and KonIQ-10k as artificially distorted image quality datasets.

Getting Started

See the directory shell.

Pre-trained Models

If you want to test the discriminators, you need to download the pre-trained models, and put them into the directory pretrained_models.
Meanwhile, you may need to modify the model location options in the shell scripts so that these model files can be loaded correctly.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this repository is useful for your research, please cite the following paper.

(1) BibTeX:

(2) ACM Reference Format:

Yunan Zhu, Haichuan Ma, Jialun Peng, Dong Liu, and Zhiwei Xiong. 2021.
Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN.
In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), October 20–24, 2021, Virtual Event, China.
ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3474085.3479234

About Brave New Ideas (BNI) Track

Following paragraphs were directly excerpted from the Call for Brave New Ideas of ACM Multimedia 2021.

The Brave New Ideas (BNI) Track of ACM Multimedia 2021 is calling for innovative papers that open up new vistas for multimedia research and stimulate activity towards addressing new, long term challenges of interest to the multimedia research community. Submissions should be scientifically rigorous and also introduce fresh perspectives.

We understand "brave" to mean that a paper (or an area of research introduced by the paper) has great potential for high impact. For the proposed algorithm, technology or application to be understood as high impact, the authors should be able to argue that their proposal is important to solving problems, to supporting new perspectives, or to providing services that directly affect people's lives.

We understand "new" to mean that an idea has not yet been proposed before. The component techniques and technologies may exist, but their integration must be novel.

BNI FAQ
1.What type of papers are suitable for the BNI track?
The BNI track invites papers with brave and new ideas, where "brave" means “out-of-the-box thinking” ideas that may generate high impact and "new" means ideas not yet been proposed before. The highlight of BNI 2021 is "Multimedia for Social Good", where innovative research showcasing the benefit to the general public are encouraged.
2.What is the format requirement for BNI papers?
The paper format requirement is consistent with that of the regular paper.
4.How selective is the BNI track?
The BNI track is at least as competitive as the regular track. A BNI paper is regarded as respectful if not more compared to a regular paper. It is even more selective than the regular one with the acceptance rate at ~10% in previous years.
6.How are the BNI papers published?
The BNI papers are officially published in the conference proceeding.

Acknowledgements

This code borrows partially from the repo BasicSR.
We use the SOD networks from BASNet and U-2-Net.

Owner
Yunan Zhu
MEng student at EEIS, USTC. [email protected]
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022