A curated list and survey of awesome Vision Transformers.

Overview
awesome-vit

English | 简体中文

A curated list and survey of awesome Vision Transformers.

You can use mind mapping software to open the mind mapping source file. You can also download the mind mapping HD pictures if you just want to browse them.

Contents

Survey

Only typical algorithms are listed in each category.

Image Classification

Chinese Blogs

Attention-based

image

Training Strategy

image

  • [DeiT] Training data-efficient image transformers & distillation through attention (ICML 2021-2020.12) [Paper]
  • [Token Labeling] All Tokens Matter: Token Labeling for Training Better Vision Transformers (2021.4) [Paper]
Model Improvements
Tokenization Module

image

Image to Token:

  • Non-overlapping Patch Embedding

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [TNT] Transformer in Transformer (NeurIPS 2021-2021.3) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Overlapping Patch Embedding

    • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

    • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

    • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]

Token to Token:

  • Fixed sampling window tokenization
    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Dynamic sampling tokenization
    • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]
    • [TokenLearner] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? (2021.6) [Paper]
Position Encoding Module

image

Explicit position encoding:

  • Absolute position encoding
    • [Transformer] Attention is All You Need] (NIPS 2017-2017.06) [Paper]
    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]
  • Relative position encoding
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

Implicit position encoding:

  • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]
  • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
  • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]
  • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
Attention Module

image

Include only global attention:

  • Multi-Head attention module

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
  • Reduce global attention computation

    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]

    • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]

    • [P2T] P2T: Pyramid Pooling Transformer for Scene Understanding (2021.6) [Paper]

    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

    • [MViT] Multiscale Vision Transformers (2021.4) [Paper]

    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • Generalized linear attention

    • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

Introduce extra local attention:

  • Local window mode

    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]
    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]
    • [GG-Transformer] Glance-and-Gaze Vision Transformer (2021.6) [Paper]
    • [Shuffle Transformer] Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer (2021.6) [Paper]
    • [MSG-Transformer] MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens (2021.5) [Paper]
    • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
  • Introduce convolutional local inductive bias

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]
    • [ELSA] ELSA: Enhanced Local Self-Attention for Vision Transformer (2021.12) [Paper]
  • Sparse attention

    • [Sparse Transformer] Sparse Transformer: Concentrated Attention Through Explicit Selection [Paper]
FFN Module

image

Improve performance with Conv's local information extraction capability:

  • [LocalViT] LocalViT: Bringing Locality to Vision Transformers (2021.4) [Paper]
  • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]
Normalization Module Location

image

  • Pre Normalization

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
  • Post Normalization

    • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]
Classification Prediction Head Module

image

  • Class Tokens

    • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]
    • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]
  • Avgerage Pooling

    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]
    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
Others

image

(1) How to output multi-scale feature map

  • Patch merging

    • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]
    • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]
    • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]
    • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]
    • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]
    • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]
  • Pooling attention

    • [MViT] Multiscale Vision Transformers (2021.4) [Paper][Imporved MViT]

    • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • Dilation convolution

    • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

(2) How to train a deeper Transformer

  • [Cait] Going deeper with Image Transformers (2021.3) [Paper]
  • [DeepViT] DeepViT: Towards Deeper Vision Transformer (2021.3) [Paper]

MLP-based

image

  • [MLP-Mixer] MLP-Mixer: An all-MLP Architecture for Vision (2021.5) [Paper]

  • [ResMLP] ResMLP: Feedforward networks for image classification with data-efficient training (CVPR2021-2021.5) [Paper]

  • [gMLP] Pay Attention to MLPs (2021.5) [Paper]

  • [CycleMLP] CycleMLP: A MLP-like Architecture for Dense Prediction (2021.7) [Paper]

ConvMixer-based

  • [ConvMixer] Patches Are All You Need [Paper]

General Architecture Analysis

image

  • Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight (2021.6) [Paper]
  • A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP (2021.8) [Paper]
  • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]
  • [ConvNeXt] A ConvNet for the 2020s (2022.01) [Paper]

Others

Object Detection

Semantic Segmentation

back to top

Papers

Transformer Original Paper

  • [Transformer] Attention is All You Need] (NIPS 2017-2017.06) [Paper]

ViT Original Paper

  • [ViT] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ICLR 2021-2020.10) [Paper]

Image Classification

2020

  • [DeiT] Training data-efficient image transformers & distillation through attention (ICML 2021-2020.12) [Paper]
  • [Sparse Transformer] Sparse Transformer: Concentrated Attention Through Explicit Selection [Paper]

2021

  • [T2T-ViT] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (2021.1) [Paper]

  • [PVT] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions (2021.2) [Paper]

  • [CPVT] Conditional Positional Encodings for Vision Transformers (2021.2) [Paper]

  • [TNT] Transformer in Transformer (NeurIPS 2021-2021.3) [Paper]

  • [Cait] Going deeper with Image Transformers (2021.3) [Paper]

  • [DeepViT] DeepViT: Towards Deeper Vision Transformer (2021.3) [Paper]

  • [Swin Transformer] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV2021-2021.3) [Paper]

  • [CeiT] Incorporating Convolution Designs into Visual Transformers (2021.3) [Paper]

  • [LocalViT] LocalViT: Bringing Locality to Vision Transformers (2021.4) [Paper]

  • [MViT] Multiscale Vision Transformers (2021.4) [Paper]

  • [Twins] Twins: Revisiting the Design of Spatial Attention in Vision Transformers (2021.4) [Paper]

  • [Token Labeling] All Tokens Matter: Token Labeling for Training Better Vision Transformers (2021.4) [Paper]

  • [ResT] ResT: An Efficient Transformer for Visual Recognition (2021.5) [Paper]

  • [MLP-Mixer] MLP-Mixer: An all-MLP Architecture for Vision (2021.5) [Paper]

  • [ResMLP] ResMLP: Feedforward networks for image classification with data-efficient training (CVPR2021-2021.5) [Paper]

  • [gMLP] Pay Attention to MLPs (2021.5) [Paper]

  • [MSG-Transformer] MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens (2021.5) [Paper]

  • [PVTv2] PVTv2: Improved Baselines with Pyramid Vision Transformer (2021.6) [Paper]

  • [TokenLearner] TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? (2021.6) [Paper]

  • Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight (2021.6) [Paper]

  • [P2T] P2T: Pyramid Pooling Transformer for Scene Understanding (2021.6) [Paper]

  • [GG-Transformer] Glance-and-Gaze Vision Transformer (2021.6) [Paper]

  • [Shuffle Transformer] Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer (2021.6) [Paper]

  • [ViTAE] ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias (2021.6) [Paper]

  • [CycleMLP] CycleMLP: A MLP-like Architecture for Dense Prediction (2021.7) [Paper]

  • [CSWin Transformer] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows (2021.07) [Paper]

  • [PS-ViT] Vision Transformer with Progressive Sampling (2021.8) [Paper]

  • A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP (2021.8) [Paper]

  • [Swin Transformer V2] Swin Transformer V2: Scaling Up Capacity and Resolution (2021.11) [Paper]

  • [MetaFormer] MetaFormer is Actually What You Need for Vision (2021.11) [Paper]

  • [Imporved MViT] Improved Multiscale Vision Transformers for Classification and Detection (2021.12) [Paper]

  • [ELSA] ELSA: Enhanced Local Self-Attention for Vision Transformer (2021.12) [Paper]

  • [ConvMixer] Patches Are All You Need [Paper]

2022

  • [ConvNeXt] A ConvNet for the 2020s (2022.01) [Paper]

Object Detection

Semantic Segmentation

back to top

Stay tuned and PRs are welcomed!

Owner
OpenMMLab
OpenMMLab
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022