Fast Neural Representations for Direct Volume Rendering

Related tags

Deep LearningfV-SRN
Overview

Fast Neural Representations for Direct Volume Rendering

Teaser

Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann

This repository contains the code and settings to reproduce all figures (and more) from the paper. https://arxiv.org/abs/2112.01579

Jump to

How to train a new network

How to reproduce the figures

Video

Watch the video

Requirements

  • NVIDIA GPU with RTX, e.g. RTX20xx or RTX30xx (we use an RTX2070)
  • CUDA 11
  • OpenGL with GLFW and GLM
  • Python 3.8 or higher, see applications/env.txt for the required packages

Tested systems:

  • Windows 10, Visual Studio 2019, CUDA 11.1, Python 3.9, PyTorch 1.9
  • Ubuntu 20.04, gcc 9.3.0, CUDA 11.1, Python 3.8, PyTorch 1.8

Installation / Project structure

The project consists of a C++/CUDA part that has to be compiled first:

  • renderer: the renderer static library, see below for noteworthy files. Files ending in .cuh and .cu are CUDA kernel files.
  • bindings: entry point to the Python bindings, after compilation leads to a python extension module pyrenderer, placed in bin
  • gui: the interactive GUI to design the config files, explore the reference datasets and the trained networks. Requires OpenGL

For compilation, we recommend CMake. For running on a headless server, specifiy -DRENDERER_BUILD_OPENGL_SUPPORT=Off -DRENDERER_BUILD_GUI=Off. Alternatively, compile-library-server.sh is provided for compilation with the built-in extension compiler of PyTorch. We use this for compilation on our headless GPU server, as it simplifies potential wrong dependencies to different CUDA, Python or PyTorch versions with different virtualenvs or conda environments.

After compiling the C++ library, the network training and evaluation is performed in Python. The python files are all found in applications:

  • applications/volumes the volumes used in the ablation studies
  • applicatiosn/config-files the config files
  • applications/common: common utilities, especially utils.py for loading the pyrenderer library and other helpers
  • applications/losses: the loss functions, including SSIM and LPIPS
  • applications/volnet: the main network code for training in inference, see below.

Noteworthy Files

Here we list and explain noteworthy files that contain important aspects of the presented method

On the side of the C++/CUDA library in renderer/ are the following files important. Note that for the various modules, multiple implementations exists, e.g. for the TF. Therefore, the CUDA-kernels are assembled on-demand using NVRTC runtime compilation.

  • Image evaluators (iimage_evaluator.h), the entry point to the renderer. Only one implementation:

    • image_evaluator_simple.h, renderer_image_evaluator_simple.cuh: Contains the loop over the pixels and generates the rays -- possibly multisampled for Monte Carlo -- from the camera
  • Ray evaluators (iray_evaluation.h), called per ray and returns the colors. They call the volume implementation to fetch the density

    • ray_evaluation_stepping.h, renderer_ray_evaluation_stepping_iso.cuh, renderer_ray_evaluation_stepping_dvr.cuh: constant stepping for isosurfaces and DVR.
    • ray_evaluation_monte_carlo.h Monte Carlo path tracing with multiple bounces, delta tracking and various phase functions
  • Volume interpolations (volume_interpolation.h). On the CUDA-side, implementations provide a functor that evaluates a position and returns the density or color at that point

    • Grid interpolation (volume_interpolation_grid.h), trilinear interpolation into a voxel grid stored in volume.h.
    • Scene Reconstruction Networks (volume_interpolation_network.h). The SRNs as presented in the paper. See the header for the binary format of the .volnet file. The proposed tensor core implementation (Sec. 4.1) can be found in renderer_volume_tensorcores.cuh

On the python side in applications/volnet/, the following files are important:

  • train_volnet: the entry point for training
  • inference.py: the entry point for inference, used in the scripts for evaluation. Also converts trained models into the binary format for the GUI
  • network.py: The SRN network specification
  • input_data.py: The loader of the input grids, possibly time-dependent
  • training_data.py: world- and screen-space data loaders, contains routines for importance sampling / adaptive resampling. The rejection sampling is implemented in CUDA for performance and called from here
  • raytracing.py: Differentiable raytracing in PyTorch, including the memory optimization from Weiss&Westermann 2021, DiffDVR

How to train

The training is launched via applications/volnet/train_volnet.py. Have a look at python train_volnet.py --help for the available command line parameters.

A typical invocation looks like this (this is how fV-SRN with Ejecta from Fig. 1 was trained)

python train_volnet.py
   config-files/ejecta70-v6-dvr.json
   --train:mode world  # instead of 'screen', Sec. 5.4
   --train:samples 256**3
   --train:sampler_importance 0.01   # importance sampling based on the density, optional, see Section 5.3
   --train:batchsize 64*64*128
   --rebuild_dataset 51   # adaptive resampling after 51 epochs, see Section 5.3
   --val:copy_and_split  # for validation, use 20% of training samples
   --outputmode density:direct  # instead of e.g. 'color', Sec. 5.3
   --lossmode density
   --layers 32:32:32  # number of hidden feature layers -> that number + 1 for the number of linear layers / weight matrices.
   --activation SnakeAlt:2
   --fouriercount 14
   --fourierstd -1  # -1 indicates NeRF-construction, positive value indicate sigma for random Fourier Features, see Sec. 5.5
   --volumetric_features_resolution 32  # the grid specification, see Sec. 5.2
   --volumetric_features_channels 16
   -l1 1  #use L1-loss with weight 1
   --lr 0.01
   --lr_step 100  #lr reduction after 100 epochs, default lr is used 
   -i 200  # number of epochs
   --save_frequency 20  # checkpoints + test visualization

After training, the resulting .hdf5 file contains the network weights + latent grid and can be compiled to our binary format via inference.py. The resulting .volnet file can the be loaded in the GUI.

How to reproduce the figures

Each figure is associated with a respective script in applications/volnet. Those scripts include the training of the networks, evaluation, and plot generation. They have to be launched with the current path pointing to applications/. Note that some of those scripts take multiple hours due to the network training.

  • Figure 1, teaser: applications/volnet/eval_CompressionTeaser.py
  • Table 1, possible architectures: applications/volnet/collect_possible_layers.py
  • Section 4.2, change to performance due to grid compression: applications/volnet/eval_VolumetricFeatures_GridEncoding
  • Figure 3, performance of the networks: applications/volnet/eval_NetworkConfigsGrid.py
  • Section 5, study on the activation functions: applications/volnet/eval_ActivationFunctions.py
  • Figure 4+5, latent grid, also includes other datasets: applications/volnet/eval_VolumetricFeatures.py
  • Figure 6, density-vs-color: applications/volnet/eval_world_DensityVsColorGrid_NoImportance.py without initial importance sampling and adaptive resampling (Fig. 6) applications/volnet/eval_world_DensityVsColorGrid.py , includes initial importance sampling, not shown applications/volnet/eval_world_DensityVsColorGrid_WithResampling.py , with initial importance sampling and adaptive resampling, improvement reported in Section 5.3
  • Table 2, Figure 7, screen-vs-world: applications/volnet/eval_ScreenVsWorld_GridNeRF.py
  • Figure 8, Fourier features: applications/volnet/eval_Fourier_Grid.py , includes the datasets not shown in the paper for space reasons
  • Figure 9,10, time-dependent fields: applications/volnet/eval_TimeVolumetricFeatures.py: train on every fifth timestep applications/volnet/eval_TimeVolumetricFeatures2.py: train on every second timestep applications/volnet/eval_TimeVolumetricFeatures_plotPaper.py: assembles the plot for Figure 9

The other eval_*.py scripts were cut from the paper due to space limitations. They equal the tests above, except that no grid was used and instead the largest possible networks fitting into the TC-architecture

Owner
Sebastian Weiss
Ph.D. student of computer science at the Technical University of Munich
Sebastian Weiss
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023