Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Overview

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Task

Training huge unsupervised deep neural networks yields to strong progress in the field of Natural Language Processing (NLP). Using these extensively pre-trained networks for particular NLP applications is the current state-of-the-art approach. In this project, we approach the task of ranking possible clarifying questions for a given query. We fine-tuned a pre-trained BERT model to rank the possible clarifying questions in a classification manner. The achieved model scores a top-5 accuracy of 0.4565 on the provided benchmark dataset.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires one NVIDIA GeForce RTX 1080 (11GB memory).

  • Create conda environment:
conda create --name dl4nlp
source activate dl4nlp
  • Install the dependencies:
pip install -r requirements.txt

Run

We use a pretrained BERT-Base by Hugging Face and fine-tune it on the given training dataset. To run training, please use the following command:

python main.py --train

For evaluation on the test set, please use the following command:

python main.py --test

Arguments for training and/or testing:

  • --train: Run training on training dataset. Default: True
  • --val: Run evaluation during training on validation dataset. Default: True
  • --test: Run evaluation on test dataset. Default: True
  • --cuda-devices: Set GPU index Default: 0
  • --cpu: Run everything on CPU. Default: False
  • --data-parallel: Use DataParallel. Default: False
  • --data-root: Path to dataset folder. Default: data
  • --train-file-name: Name of training file name in data-root. Default: training.tsv
  • --test-file-name: Name of test file name in data-root. Default: test_set.tsv
  • --question-bank-name: Name of question bank file name in data-root. Default: question_bank.tsv
  • --checkpoints-root: Path to checkpoints folder. Default: checkpoints
  • --checkpoint-name: File name of checkpoint in checkpoints-root to start training or use for testing. Default: None
  • --runs-root: Path to output runs folder for tensorboard. Default: runs
  • --txt-root: Path to output txt folder for evaluation results. Default: txt
  • --lr: Learning rate. Default: 1e-5
  • --betas: Betas for optimization. Default: (0.9, 0.999)
  • --weight-decay: Weight decay. Default: 1e-2
  • --val-start: Set at which epoch to start validation. Default: 0
  • --val-step: Set at which epoch rate to valide. Default: 1
  • --val-split: Use subset of training dataset for validation. Default: 0.005
  • --num-epochs: Number of epochs for training. Default: 10
  • --batch-size: Samples per batch. Default: 32
  • --num-workers: Number of workers. Default: 4
  • --top-k-accuracy: Evaluation metric with flexible top-k-accuracy. Default: 50
  • --true-label: True label in dataset. Default: 1
  • --false-label: False label in dataset. Default: 0

Example output

User query:

Tell me about Computers

Propagated clarifying questions:

  1. do you like using computers
  2. do you want to know how to do computer programming
  3. do you want to see some closeup of a turbine
  4. are you looking for information on different computer programming languages
  5. are you referring to a software
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022