Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Overview

Language Emergence in Multi Agent Dialog

Code for the Paper

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M. F. Moura, Stefan Lee, Dhruv Batra EMNLP 2017 (Best Short Paper)

If you find this code useful, please consider citing the original work by authors:

@inproceedings{visdial,
  title = {{N}atural {L}anguage {D}oes {N}ot {E}merge '{N}aturally' in {M}ulti-{A}gent {D}ialog},
  author = {Satwik Kottur and Jos\'e M.F. Moura and Stefan Lee and Dhruv Batra},
  journal = {CoRR},
  volume = {abs/1706.08502},
  year = {2017}
}

Introduction

This paper focuses on proving that the emergence of language by agent-dialogs is not necessarily compositional and human interpretable. To demonstrate this fact, the paper uses a Image Guessing Game "Task and Talk" as a testbed. The game comprises of two bots, a questioner and answerer.

Answerer has an image attributes, as shown in figure. Questioner cannot see the image, and has a task of finding two attributes of the image (color, shape, style). Answerer does not know the task. Multiple rounds of q/a dialogs occur, after which the questioner has to guess the attributes. Reward to both bots is given on basis of prediction of questioner.

Task And Talk

Further, the paper discusses the ways to make the grounded language more compositional and human interpretable by restrictions on how two agents may communicate.

Setup

This repository is only compatible with Python3, as ParlAI imposes this restriction; it requires Python3.

  1. Follow instructions under Installing ParlAI section from ParlAI site.
  2. Follow instructions outlined on PyTorch Homepage for installing PyTorch (Python3).
  3. tqdm is used for providing progress bars, which can be downloaded via pip3.

Dataset Generation

Described in Section 2 and Figure 1 of paper. Synthetic dataset of shape attributes is generated using data/generate_data.py script. To generate the dataset, simply execute:

cd data
python3 generate_data.py
cd ..

This will create data/synthetic_dataset.json, with 80% training data (312 samples) and rest validation data (72 samples). Save path, size of dataset and split ratio can be changed through command line. For more information:

python3 generate_data.py --help

Dataset Schema

{
    "attributes": ["color", "shape", "style"],
    "properties": {
        "color": ["red", "green", "blue", "purple"],
        "shape": ["square", "triangle", "circle", "star"],
        "style": ["dotted", "solid", "filled", "dashed"]
    },
    "split_data": {
        "train": [ ["red", "square", "solid"], ["color2", "shape2", "style2"] ],
        "val": [ ["green", "star", "dashed"], ["color2", "shape2", "style2"] ]
    },
    "task_defn": [ [0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1] ]
}

A custom Pytorch Dataset class is written in dataloader.py which ingests this dataset and provides random batch / complete data while training and validation.

Training

Training happens through train.py, which iteratively carries out multiple rounds of dialog in each episode, between our ParlAI Agents - QBot and ABot, both placed in a ParlAI World. The dialog is completely cooperative - both bots receive same reward after each episode.

This script prints the cumulative reward, training accuracy and validation accuracy after fixed number of iterations. World checkpoints are saved after regular intervals as well.

Training is controlled by various options, which can be passed through command line. All of them have suitable default values set in options.py, although they can be tinkered easily. They can also be viewed as:

python3 train.py --help   # view command line args (you need not change "Main ParlAI Arguments")

Questioner and Answerer bot classes are defined in bots.py and World is defined in world.py. Paper describes three configurations for training:

Overcomplete Vocabulary

Described in Section 4.1 of paper. Both QBot and Abot will have vocabulary size equal to number of possible objects (64).

python3 train.py --data-path /path/to/json --q-out-vocab 64 --a-out-vocab 64

Attribute-Value Vocabulary

Described in Section 4.2 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible attribute values (4 * 3).

python3 train.py --data-path /path/to/json --q-out-vocab 3 --a-out-vocab 12

Memoryless ABot, Minimal Vocabulary (best)

Described in Section 4.3 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible values per attribute (4).

python3 train.py --q-out-vocab 3 --a-out-vocab 4 --data-path /path/to/json --memoryless-abot

Checkpoints would be saved by default in checkpoints directory every 100 epochs. Be default, CPU is used for training. Include --use-gpu in command-line to train using GPU.

Refer script docstring and inline comments in train.py for understanding of execution.

Evaluation

Saved world checkpoints can be evaluated using the evaluate.py script. Besides evaluation, the dialog between QBot and ABot for all examples can be saved in JSON format. For evaluation:

python3 evaluate.py --load-path /path/to/pth/checkpoint

Save the conversation of bots by providing --save-conv-path argument. For more information:

python3 evaluate.py --help

Evaluation script reports training and validation accuracies of the world. Separate accuracies for first attribute match, second attribute match, both match and atleast one match are reported.

Sample Conversation

Im: ['purple', 'triangle', 'filled'] -  Task: ['shape', 'color']
    Q1: X    A1: 2
    Q2: Y    A2: 0
    GT: ['triangle', 'purple']  Pred: ['triangle', 'purple']

Pretrained World Checkpoint

Best performing world checkpoint has been released here, along with details to reconstruct the world object using this checkpoint.

Reported metrics:

Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)

TODO: Visualizing evolution chart - showing emergence of grounded language.

References

  1. Satwik Kottur, José M.F.Moura, Stefan Lee, Dhruv Batra. Natural Language Does Not Emerge Naturally in Multi-Agent Dialog. EMNLP 2017. [arxiv]
  2. Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, Jason Weston. ParlAI: A Dialog Research Software Platform. 2017. [arxiv]
  3. Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh and Dhruv Batra. Visual Dialog. CVPR 2017. [arxiv]
  4. Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning. ICCV 2017. [arxiv]
  5. ParlAI Docs. [http://parl.ai/static/docs/index.html]
  6. PyTorch Docs. [http://pytorch.org/docs/master]

Standing on the Shoulders of Giants

The ease of implementing this paper using ParlAI framework is heavy accredited to the original source code released by authors of this paper. [batra-mlp-lab/lang-emerge]

License

BSD

You might also like...
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Oriented Response Networks, in CVPR 2017
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

🌈 PyTorch Implementation for EMNLP'21 Findings
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Releases(v1.0)
  • v1.0(Nov 10, 2017)

    Attached checkpoint was the best one when the following script was executed at this commit:

    python3 train.py --use-gpu --memoryless-abot --num-epochs 99999
    

    Evaluation of the checkpoint:

    python3 evaluate.py --load-path world_best.pth 
    

    Reported metrics:

    Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
    Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)
    

    Minimal snippet to reconstruct the world using this checkpoint:

    import torch
    
    from bots import Questioner, Answerer
    from world import QAWorld
    
    world_dict = torch.load('path/to/checkpoint.pth')
    questioner = Questioner(world_dict['opt'])
    answerer = Answerer(world_dict['opt'])
    if world_dict['opt'].get('use_gpu'):
        questioner, answerer = questioner.cuda(), answerer.cuda()
    
    questioner.load_state_dict(world_dict['qbot'])
    answerer.load_state_dict(world_dict['abot'])
    world = QAWorld(world_dict['opt'], questioner, answerer)
    
    Source code(tar.gz)
    Source code(zip)
    world_best.pth(679.17 KB)
Owner
Karan Desai
Karan Desai
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020