Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

Overview

TDY-CNN for Text-Independent Speaker Verification

Official implementation of

  • Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
    by Seong-Hu Kim, Hyeonuk Nam, Yong-Hwa Park @ Human Lab, Mechanical Engineering Department, KAIST
    arXiv

Accepted paper in ICASSP 2022.

This code was written mainly with reference to VoxCeleb_trainer of paper 'In defence of metric learning for speaker recognition'.

Temporal Dynamic Convolutional Neural Network (TDY-CNN)

TDY-CNN efficiently applies adaptive convolution depending on time bins by changing the computation order as follows:

where x and y are input and output of TDY-CNN module which depends on frequency feature f and time feature t in time-frequency domain data. k-th basis kernel is convoluted with input and k-th bias is added. The results are aggregated using the attention weights which depends on time bins. K is the number of basis kernels, and σ is an activation function ReLU. The attention weight has a value between 0 and 1, and the sum of all basis kernels on a single time bin is 1 as the weights are processed by softmax.

Requirements and versions used

Python version of 3.7.10 is used with following libraries

  • pytorch == 1.8.1
  • pytorchaudio == 0.8.1
  • numpy == 1.19.2
  • scipy == 1.5.3
  • scikit-learn == 0.23.2

Dataset

We used VoxCeleb1 & 2 dataset in this paper. You can download the dataset by reffering to VoxCeleb1 and VoxCeleb1.

Training

You can train and save model in exps folder by running:

python trainSpeakerNet.py --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/TDY_CNN_ResNet34 --nPerSpeaker 2 --batch_size 400

This implementation also provides accelerating training with distributed training and mixed precision training.

  • Use --distributed flag to enable distributed training and --mixedprec flag to enable mixed precision training.
    • GPU indices should be set before training : os.environ['CUDA_VISIBLE_DEVICES'] ='0,1,2,3' in trainSpeakernet.py.

Results:

Network #Parm EER (%) C_det (%)
TDY-VGG-M 71.2M 3.04 0.237
TDY-ResNet-34(×0.25) 13.3M 1.58 0.116
TDY-ResNet-34(×0.5) 51.9M 1.48 0.118

  • This result is low-dimensional t-SNE projection of frame-level speaker embed-dings of MHRM0 and FDAS1 using (a) baseline model ResNet-34(×0.25) and (b) TDY-ResNet-34(×0.25). Left column represents embeddings for different speakers, and right column represents em-beddings for different phoneme classes.

  • Embeddings by TDY-ResNet-34(×0.25) are closely gathered regardless of phoneme groups. It shows that the temporal dynamic model extracts consistent speaker information regardless of phonemes.

Pretrained models

There are pretrained models in folder pretrained_model.

For example, you can check 1.4786 of EER by running following script using TDY-ResNet-34(×0.5).

python trainSpeakerNet.py --eval --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/test --eval_frames 400 --initial_model pretrained_model/pretrained_TDy_ResNet34_half.model

Citation

@article{kim2021tdycnn,
  title={Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis},
  author={Kim, Seong-Hu and Nam, Hyeonuk and Park, Yong-Hwa},
  journal={arXiv preprint arXiv:2110.03213},
  year={2021}
}

Please contact Seong-Hu Kim at [email protected] for any query.

Owner
Seong-Hu Kim
Seong-Hu Kim
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Ian Covert 130 Jan 01, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022