SelfRemaster: SSL Speech Restoration

Overview

SelfRemaster: Self-Supervised Speech Restoration

Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Demo

Setup

  1. Clone this repository: git clone https://github.com/Takaaki-Saeki/ssl_speech_restoration.git
  2. CD into this repository: cd ssl_speech_restoration
  3. Install python packages and download some pretrained models: ./setup.sh

Getting started

  • If you use default Japanese corpora
    • Download JSUT Basic5000 and JVS Corpus
    • Downsample them to 22.05 kHz and Place them under data/ as jsut_22k and jvs_22k
    • Place simulated low-quality data under ./data as jsut_22k-low and jvs_22k-low
  • Or you can use arbitrary datasets by modifying config files

Training

You can choose MelSpec or SourFilter models with --config_path option.
As shown in the paper, MelSpec model is of higher-quality.

Firstly you need to split the data to train/val/test and dump them by the following command.

python preprocess.py --config_path configs/train/${feature}/ssl_jsut.yaml

To perform self-supervised learning with dual learning, run the following command.

python train.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, refer to train.py.

Speech restoration

To perform speech restoration of the test data, run the following command.

python eval.py \
    --config_path configs/test/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, see eval.py.

Audio effect transfer

You can run a simple audio effect transfer demo using a model pretrained with real data.
Run the following command.

python aet_demo.py

Or you can customize the dataset or model.
You need to edit audio_effect_transfer.yaml and run the following command.

python aet.py \
    --config_path configs/test/melspec/audio_effect_transfer.yaml \
    --stage ssl-dual \
    --run_name aet_melspec_dual

For other options, see aet.py.

Pretrained models

See here.

Reproducing results

You can generate simulated low-quality data as in the paper with the following command.

python simulated_data.py \
    --in_dir ${input_directory (e.g., path to jsut_22k)} \
    --output_dir ${output_directory (e.g., path to jsut_22k-low)} \
    --corpus_type ${single-speaker corpus or multi-speaker corpus} \
    --deg_type lowpass

Then download the pretrained model correspond to the deg_type and run the following command.

python eval.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

Citation

@article{saeki22selfremaster,
  title={{SelfRemaster}: {S}elf-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling},
  author={T. Saeki and S. Takamichi and T. Nakamura and N. Tanji and H. Saruwatari},
  journal={arXiv preprint arXiv:2203.12937},
  year={2022}
}

Reference

Owner
Takaaki Saeki
Ph.D. Student @ UTokyo / Spoken Language Processing
Takaaki Saeki
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022