SelfRemaster: SSL Speech Restoration

Overview

SelfRemaster: Self-Supervised Speech Restoration

Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Demo

Setup

  1. Clone this repository: git clone https://github.com/Takaaki-Saeki/ssl_speech_restoration.git
  2. CD into this repository: cd ssl_speech_restoration
  3. Install python packages and download some pretrained models: ./setup.sh

Getting started

  • If you use default Japanese corpora
    • Download JSUT Basic5000 and JVS Corpus
    • Downsample them to 22.05 kHz and Place them under data/ as jsut_22k and jvs_22k
    • Place simulated low-quality data under ./data as jsut_22k-low and jvs_22k-low
  • Or you can use arbitrary datasets by modifying config files

Training

You can choose MelSpec or SourFilter models with --config_path option.
As shown in the paper, MelSpec model is of higher-quality.

Firstly you need to split the data to train/val/test and dump them by the following command.

python preprocess.py --config_path configs/train/${feature}/ssl_jsut.yaml

To perform self-supervised learning with dual learning, run the following command.

python train.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, refer to train.py.

Speech restoration

To perform speech restoration of the test data, run the following command.

python eval.py \
    --config_path configs/test/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, see eval.py.

Audio effect transfer

You can run a simple audio effect transfer demo using a model pretrained with real data.
Run the following command.

python aet_demo.py

Or you can customize the dataset or model.
You need to edit audio_effect_transfer.yaml and run the following command.

python aet.py \
    --config_path configs/test/melspec/audio_effect_transfer.yaml \
    --stage ssl-dual \
    --run_name aet_melspec_dual

For other options, see aet.py.

Pretrained models

See here.

Reproducing results

You can generate simulated low-quality data as in the paper with the following command.

python simulated_data.py \
    --in_dir ${input_directory (e.g., path to jsut_22k)} \
    --output_dir ${output_directory (e.g., path to jsut_22k-low)} \
    --corpus_type ${single-speaker corpus or multi-speaker corpus} \
    --deg_type lowpass

Then download the pretrained model correspond to the deg_type and run the following command.

python eval.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

Citation

@article{saeki22selfremaster,
  title={{SelfRemaster}: {S}elf-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling},
  author={T. Saeki and S. Takamichi and T. Nakamura and N. Tanji and H. Saruwatari},
  journal={arXiv preprint arXiv:2203.12937},
  year={2022}
}

Reference

Owner
Takaaki Saeki
Ph.D. Student @ UTokyo / Spoken Language Processing
Takaaki Saeki
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022