SelfRemaster: SSL Speech Restoration

Overview

SelfRemaster: Self-Supervised Speech Restoration

Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Demo

Setup

  1. Clone this repository: git clone https://github.com/Takaaki-Saeki/ssl_speech_restoration.git
  2. CD into this repository: cd ssl_speech_restoration
  3. Install python packages and download some pretrained models: ./setup.sh

Getting started

  • If you use default Japanese corpora
    • Download JSUT Basic5000 and JVS Corpus
    • Downsample them to 22.05 kHz and Place them under data/ as jsut_22k and jvs_22k
    • Place simulated low-quality data under ./data as jsut_22k-low and jvs_22k-low
  • Or you can use arbitrary datasets by modifying config files

Training

You can choose MelSpec or SourFilter models with --config_path option.
As shown in the paper, MelSpec model is of higher-quality.

Firstly you need to split the data to train/val/test and dump them by the following command.

python preprocess.py --config_path configs/train/${feature}/ssl_jsut.yaml

To perform self-supervised learning with dual learning, run the following command.

python train.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, refer to train.py.

Speech restoration

To perform speech restoration of the test data, run the following command.

python eval.py \
    --config_path configs/test/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, see eval.py.

Audio effect transfer

You can run a simple audio effect transfer demo using a model pretrained with real data.
Run the following command.

python aet_demo.py

Or you can customize the dataset or model.
You need to edit audio_effect_transfer.yaml and run the following command.

python aet.py \
    --config_path configs/test/melspec/audio_effect_transfer.yaml \
    --stage ssl-dual \
    --run_name aet_melspec_dual

For other options, see aet.py.

Pretrained models

See here.

Reproducing results

You can generate simulated low-quality data as in the paper with the following command.

python simulated_data.py \
    --in_dir ${input_directory (e.g., path to jsut_22k)} \
    --output_dir ${output_directory (e.g., path to jsut_22k-low)} \
    --corpus_type ${single-speaker corpus or multi-speaker corpus} \
    --deg_type lowpass

Then download the pretrained model correspond to the deg_type and run the following command.

python eval.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

Citation

@article{saeki22selfremaster,
  title={{SelfRemaster}: {S}elf-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling},
  author={T. Saeki and S. Takamichi and T. Nakamura and N. Tanji and H. Saruwatari},
  journal={arXiv preprint arXiv:2203.12937},
  year={2022}
}

Reference

Owner
Takaaki Saeki
Ph.D. Student @ UTokyo / Spoken Language Processing
Takaaki Saeki
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021