This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

Overview

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral)

Paper

This repository contains the official PyTorch implementation of:

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks

Full paper | 5min Presentation | Video | Project website | Poster

Installation

Please follow the instructions in ./installation.txt to install the environment and the SMPL model.

Run SCANimate

0. Activate the environment if it is not already activated:

$ source ./venv/scanimate/bin/activate

1. First download the pretrained model, some motion sequences and other files for the demo

  • Download an AIST++ dance motion sequence for test (CC BY 4.0 license):
$ . ./download_aist_demo_motion.sh

​ This script will create a data folder under current directory, please make sure to put it under the SCANimate directory.

  • Download pre-trained scanimats for animation test: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download some demo scanimats. Unzip the zip file into ./data directory

  • Download subset of CAPE data for training demo: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download the data for training demo. Unzip the zip file into ./data directory.

  • Now you should have a ./data directory under SCANimate. Within ./data you will have 5 directories: minimal_body, pretrained, pretrained_configs, test, and train.

Run animation demos:

2. Now you can run the test demo with the following command:

$ python -m apps.test_scanimate -c ./data/pretrained_configs/release_03223_shortlong.yaml -t ./data/test/gLO_sBM_cAll_d14_mLO1_ch05
  • You can replace the configuration file with other files under ./data/pretrained_configs/ to try other subjects.
  • You can also replace the test motions with others under ./data/test.
  • The result will be generated under ./demo_result/results_test.

3. The generated mesh sequences can be rendered with the code under ./demo_result:

First, install Open3D (for rendering the results) by:

$ pip install open3d==0.12.0

Then run:

$ python render/render_aist.py -i demo_result/results_test/release_03223_shortlong_test_gLO_sBM_cAll_d14_mLO1_ch05/ -o demo_result

Run training demo

2. Now you can run the demo training with

$ python -m apps.train_scanimate -c ./configs/example.yaml

The results can be found under ./demo_result/results/example.

3. Train on your own data Make your data the same structure as in the ./data/train/example_03375_shortlong, where a .ply file contains a T-pose SMPL body mesh and a folder containing training frames. Each frame corresponds to two files: one .npz files containing SMPL parameters that describes the body and one .ply file containing the clothed scan. The body should align with the scan. Then, change the ./configs/example.yaml to point to your data directory and you are good to go!

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{Saito:CVPR:2021,
  title = {{SCANimate}: Weakly Supervised Learning of Skinned Clothed Avatar Networks},
  author = {Saito, Shunsuke and Yang, Jinlong and Ma, Qianli and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}}
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023