Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Overview

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference

Source code for RCDG model in AAAI20 Generating Persona Consistent Dialogues by Exploiting Natural Language Inference, a natural language inference (NLI) enhanced reinforcement learning dialogue model.

Requirements:

The code is tested under the following env:

  • Python 3.6
  • Pytorch 0.3.1

Install with conda: conda install pytorch==0.3.1 torchvision cudatoolkit=7.5 -c pytorch

This released code has been tested on a Titan-XP 12G GPU.

Data

We have provided some data samples in ./data to show the format. For downloading the full datasets, please refer to the following papers:

How to Run:

For a easier way to run the code, here the NLI model is GRU+MLP, i.e. RCDG_base, and we remove the time-consuming MC search.

Here are a few steps to run this code:

0. Prepare Data

python preprocess.py -train_src data/src-train.txt -train_tgt data/tgt-train.txt -train_per data/per-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -valid_per data/per-val.txt -train_nli data/nli-train.txt -valid_nli data/nli-valid.txt -save_data data/nli_persona -src_vocab_size 18300 -tgt_vocab_size 18300 -share_vocab

And as introduced in the paper, there are different training stages:

1. NLI model Pretrain

cd NLI_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -save_model saved_model/consistent_dialogue -rnn_size 500 -word_vec_size 300 -dropout 0.2 -epochs 5 -learning_rate_decay 1 -gpu 0

And you should see something like:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 1
31432
Epoch  1, nli_step     1/ 4108; nli: 0.28125
Epoch  1, nli_step    11/ 4108; nli: 0.38125
Epoch  1, nli_step    21/ 4108; nli: 0.43438
Epoch  1, nli_step    31/ 4108; nli: 0.48125
Epoch  1, nli_step    41/ 4108; nli: 0.53750
Epoch  1, nli_step    51/ 4108; nli: 0.56250
Epoch  1, nli_step    61/ 4108; nli: 0.49062
...

2. Generator G Pretrain

cd ../G_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -rnn_size 500 -word_vec_size 300  -dropout 0.2 -epochs 15 -g_optim adam -g_learning_rate 1e-3 -learning_rate_decay 1 -train_from PATH_TO_PRETRAINED_NLI -gpu 0

Here the PATH_TO_PRETRAINED_NLI should be replaced by your model path, e.g., ../NLI_pretrain/saved_model/consistent_dialogue_e3.pt.

If , you should see the ppl comes down during training, which means the dialogue model is in training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  4, teacher_force     1/ 4108; acc:   0.00; ppl: 18619.76; 125 src tok/s; 162 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    11/ 4108; acc:   9.69; ppl: 2816.01; 4159 src tok/s; 5468 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    21/ 4108; acc:   9.78; ppl: 550.46; 5532 src tok/s; 6116 tgt tok/s;      4 s elapsed
Epoch  4, teacher_force    31/ 4108; acc:  11.15; ppl: 383.06; 5810 src tok/s; 6263 tgt tok/s;      5 s elapsed
...
Epoch  4, teacher_force   941/ 4108; acc:  25.40; ppl:  90.18; 5993 src tok/s; 6645 tgt tok/s;     63 s elapsed
Epoch  4, teacher_force   951/ 4108; acc:  27.49; ppl:  77.07; 5861 src tok/s; 6479 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   961/ 4108; acc:  26.24; ppl:  83.17; 5473 src tok/s; 6443 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   971/ 4108; acc:  24.33; ppl:  97.14; 5614 src tok/s; 6685 tgt tok/s;     65 s elapsed
...

3. Discriminator D Pretrain

cd ../D_pretrain/

python train.py -epochs 20 -d_optim adam -d_learning_rate 1e-4 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_G -batch_size 32 -learning_rate_decay 0.99 -gpu 0

Similarly, replace PATH_TO_PRETRAINED_G with the G Pretrain model path.

The acc of D will be displayed during training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  5, d_step     1/ 4108; d: 0.49587
Epoch  5, d_step    11/ 4108; d: 0.51580
Epoch  5, d_step    21/ 4108; d: 0.49853
Epoch  5, d_step    31/ 4108; d: 0.55248
Epoch  5, d_step    41/ 4108; d: 0.55168
...

4. Reinforcement Training

cd ../reinforcement_train/

python train.py -epochs 30 -batch_size 32 -d_learning_rate 1e-4 -g_learning_rate 1e-4 -learning_rate_decay 0.9 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_D -gpu 0

Remember to replace PATH_TO_PRETRAINED_D with the D Pretrain model path.

Note that all the -epochs are global among all stages, if you want to tune this parameter. Actually, there are 30 - 20 = 10 training epochs in this Reinforcement Training stage if the D Pretrain model was trained 20 epochs in total.

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  7, self_sample     1/ 4108; acc:   2.12; ppl:   0.28; 298 src tok/s; 234 tgt tok/s;      2 s elapsed
Epoch  7, teacher_force    11/ 4108; acc:   3.32; ppl:   0.53; 2519 src tok/s; 2772 tgt tok/s;      3 s elapsed
Epoch  7, d_step    21/ 4108; d: 0.98896
Epoch  7, d_step    31/ 4108; d: 0.99906
Epoch  7, self_sample    41/ 4108; acc:   0.00; ppl:   0.27; 1769 src tok/s; 260 tgt tok/s;      7 s elapsed
Epoch  7, teacher_force    51/ 4108; acc:   2.83; ppl:   0.43; 2368 src tok/s; 2910 tgt tok/s;      9 s elapsed
Epoch  7, d_step    61/ 4108; d: 0.75311
Epoch  7, d_step    71/ 4108; d: 0.83919
Epoch  7, self_sample    81/ 4108; acc:   6.20; ppl:   0.33; 1791 src tok/s; 232 tgt tok/s;     12 s elapsed
...

5. Testing Trained Model

Now we have a trained dialogue model, we can test by:

Still in ./reinforcement_train/

python predict.py -model TRAINED_MODEL_PATH  -src ../data/src-val.txt -tgt ../data/tgt-val.txt -replace_unk -verbose -output ./results.txt -per ../data/per-val.txt -nli nli-val.txt -gpu 0

MISC

  • Initializing Model Seems Slow?

    This is a legacy problem due to pytorch < 0.4, not brought by this project. And the training efficiency will not be affected.

  • BibTex

     @article{Song_RCDG_2020,
     	title={Generating Persona Consistent Dialogues by Exploiting Natural Language Inference},
     	volume={34},
     	DOI={10.1609/aaai.v34i05.6417},
     	number={05},
     	journal={Proceedings of the AAAI Conference on Artificial Intelligence},
     	author={Song, Haoyu and Zhang, Wei-Nan and Hu, Jingwen and Liu, Ting},
     	year={2020},
     	month={Apr.},
     	pages={8878-8885}
     	}
    
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022