This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Overview

Diverse Motion Stylization (Official)

This is the official Pytorch implementation of this paper.

teaser

Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model
Soomin Park, Deok-Kyeong Jang, and Sung-Hee Lee
In The ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA), 2021
Appeared in: PACM on Computer Graphics and Interactive Techniques (PACMCGIT)

Paper: https://dl.acm.org/doi/pdf/10.1145/3480145
Project: http://motionlab.kaist.ac.kr/?page_id=6301

Abstract: This paper presents a novel deep learning-based framework for translating a motion into various styles within multiple domains. Our framework is a single set of generative adversarial networks that learns stylistic features from a collection of unpaired motion clips with style labels to support mapping between multiple style domains. We construct a spatio-temporal graph to model a motion sequence and employ the spatial-temporal graph convolution networks (ST-GCN) to extract stylistic properties along spatial and temporal dimensions. Through spatial-temporal modeling, our framework shows improved style translation results between significantly different actions and on a long motion sequence containing multiple actions. In addition, we first develop a mapping network for motion stylization that maps a random noise to style, which allows for generating diverse stylization results without using reference motions. Through various experiments, we demonstrate the ability of our method to generate improved results in terms of visual quality, stylistic diversity, and content preservation.

Abstract video

Click the figure to watch the teaser video.
abstract

Requirements

  • matplotlib == 3.4.3
  • numpy == 1.21.3
  • scipy == 1.7.1
  • torch == 1.10.0+cu113

Installation

Clone this repository:

git clone https://github.com/soomean/Diverse-Motion-Stylization.git
cd Diverse-Motion-Stylization

Install the dependencies:

pip install -r requirements.txt

Prepare data

  1. Download the datasets from the following link: https://drive.google.com/drive/folders/1Anr9ouHSnZ80C9u2SB6X0f2Clzs4v7Dp?usp=sharing
  2. Put them in the datasets directory

Download pretrained model

  1. mkdir checkpoints
  2. Download the pretrained model from the following link: https://drive.google.com/drive/folders/1LBNddVo9A18FUz6y4LcA6vmIv3_Bm2QN?usp=sharing
  3. Put it in the checkpoints/[experiment_name] directory

Test pretrained model

python test.py --name [experiment_name] --mode test --load_iter 100000

Train from scratch

python train.py --name [experiment_name]

Supplementary video (full demo)

Click the figure to watch the supplementary video.
supp

Citation

If you find our work useful, please cite our paper as below:

@article{park2021diverse,
  title={Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model},
  author={Park, Soomin and Jang, Deok-Kyeong and Lee, Sung-Hee},
  journal={Proceedings of the ACM on Computer Graphics and Interactive Techniques},
  volume={4},
  number={3},
  pages={1--17},
  year={2021},
  publisher={ACM New York, NY, USA}
}

Acknowledgements

This repository contains code snippets of the following projects:
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing https://github.com/yysijie/st-gcn
https://github.com/clovaai/stargan-v2
https://github.com/DeepMotionEditing/deep-motion-editing

License

This work is licensed under the terms of the MIT license.

Contact

If you have any question, please feel free to contact me ([email protected]).

Owner
Soomin Park
Soomin Park
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022