Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

Related tags

Deep Learningsyllabus
Overview

IIC2233 - Programación Avanzada

Evaluación

  1. Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la nota del curso NC como:

    NC = 2/3 * T + 1/3 * AC

    Donde T es el promedio ponderado de las tareas y AC es el promedio de las actividades.

    El promedio ponderado de las tareas se calcula de la siguiente manera:

    T = ( 1xT0 + 2×T1 + 3×T2 + 3×T3 ) / 9

    El promedio de las actividades corresponderá a las 4 mejores notas entre actividades sumativas (son 4) y la nota de actividades formativas, que cuenta como una actividad sumativa más:

    AC = ((ACS1 + ACS2 + ACS3 + ACS4 + EF) - mínimo) / 4, dónde mínimo es la peor nota entre las cinco consideradas (ACS1, ACS2, ACS3, ACS4 y EF).

    La nota de actividades formativas AF toma en consideración la participación del estudiante como meta. Consta de:

    • Siete instancias de actividades formativas, donde el trabajo del estudiante será revisado superficialmente y recibirá un puntaje de cumplimiento acorde: 0 (no logrado), 0.5 (medianamente logrado) y 1 (logrado).
    • Doce controles de auto-evaluación, donde cada control será corregido automáticamente en la plataforma Canvas, y se le asignará un nivel de cumplimiento entre: no logrado (0) y logrado (0.1), según el porcentaje de logro.

    Se considerará la suma de cumplimientos (A) de las siete actividades y la suma de cumplimineto (B) de los doce controles, donde el cálculo de EF es:

    EF = 6 x (min(A; 3) + min(B; 1)) / 4 + 1, donde A es la suma de cumplimientos en actividades formativas y B es la suma de cumplimiento de los controles de auto-evaluación.

  2. Adicionalmente, para aprobar el curso el alumno debe cumplir con:

    • NC debe ser mayor o igual a 3,950
    • AC debe ser mayor o igual a 3,950
    • T debe ser mayor o igual a 3,950
  3. Si el alumno cumple con las condiciones nombradas en el punto 2, entonces NF = NC. En caso contrario, NF = min(3,9; NC)

  4. La inasistencia a alguna de las evaluaciones (actividad sumativa) se evalúa con nota 1.0.

  5. Solo será aproximada la nota final NF. El resto de las notas serán usadas con dos decimales.

  6. Las notas de todas las evaluaciónes se publicarán en esta planilla. Solo se puede acceder con cuenta UC, no se dará acceso a ninguna otra cuenta.

Recorrección

Para recorregir alguna evaluación, se publicará oportunamente un form en el que tendrán que exponer sus motivos.

No se aceptarán recorrecciones del tipo: "Creo que merezco más nota" sin que haya alguna justificación de por medio.

Entregas atrasadas

Deben contestar un form que se habilitará en el debido momento. Se recomienda revisar el documento de entregas atrasadas para más detalles.

Foro

La página de Issues se utilizará como foro para preguntas.

Semestres Anteriores

Puedes ver los syllabus de los semestres anteriores en:

Otros

Los contenidos, ayudantes, calendario, cuestionario de recorrecciones y material se encuentran en este link.

Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022