How to Train a GAN? Tips and tricks to make GANs work

Related tags

Deep Learningganhacks
Overview

(this list is no longer maintained, and I am not sure how relevant it is in 2020)

How to Train a GAN? Tips and tricks to make GANs work

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.

Here's a link to the authors of this document

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Normalize the inputs

  • normalize the images between -1 and 1
  • Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

  • because the first formulation has vanishing gradients early on
  • Goodfellow et. al (2014)

In practice, works well:

  • Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

  • Dont sample from a Uniform distribution

cube

  • Sample from a gaussian distribution

sphere

4: BatchNorm

  • Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
  • when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

batchmix

5: Avoid Sparse Gradients: ReLU, MaxPool

  • the stability of the GAN game suffers if you have sparse gradients
  • LeakyReLU = good (in both G and D)
  • For Downsampling, use: Average Pooling, Conv2d + stride
  • For Upsampling, use: PixelShuffle, ConvTranspose2d + stride

6: Use Soft and Noisy Labels

  • Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
    • Salimans et. al. 2016
  • make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

  • Use DCGAN when you can. It works!
  • if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

  • Experience Replay
    • Keep a replay buffer of past generations and occassionally show them
    • Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
  • All stability tricks that work for deep deterministic policy gradients
  • See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

  • optim.Adam rules!
    • See Radford et. al. 2015
  • Use SGD for discriminator and ADAM for generator

10: Track failures early

  • D loss goes to 0: failure mode
  • check norms of gradients: if they are over 100 things are screwing up
  • when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
  • if loss of generator steadily decreases, then it's fooling D with garbage (says martin)

11: Dont balance loss via statistics (unless you have a good reason to)

  • Dont try to find a (number of G / number of D) schedule to uncollapse training
  • It's hard and we've all tried it.
  • If you do try it, have a principled approach to it, rather than intuition

For example

while lossD > A:
  train D
while lossG > B:
  train G

12: If you have labels, use them

  • if you have labels available, training the discriminator to also classify the samples: auxillary GANs

13: Add noise to inputs, decay over time

14: [notsure] Train discriminator more (sometimes)

  • especially when you have noise
  • hard to find a schedule of number of D iterations vs G iterations

15: [notsure] Batch Discrimination

  • Mixed results

16: Discrete variables in Conditional GANs

  • Use an Embedding layer
  • Add as additional channels to images
  • Keep embedding dimensionality low and upsample to match image channel size

17: Use Dropouts in G in both train and test phase

Authors

  • Soumith Chintala
  • Emily Denton
  • Martin Arjovsky
  • Michael Mathieu
Owner
Soumith Chintala
/\︿╱\ _________________________________ \0_ 0 /╱\╱____________________________ \▁︹_/
Soumith Chintala
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022