Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

Related tags

Deep LearningCSRA
Overview

CSRA

This is the official code of ICCV 2021 paper:
Residual Attention: A Simple But Effective Method for Multi-Label Recoginition

attention

Demo, Train and Validation code have been released! (including VIT on Wider-Attribute)

This package is developed by Mr. Ke Zhu (http://www.lamda.nju.edu.cn/zhuk/) and we have just finished the implementation code of ViT models. If you have any question about the code, please feel free to contact Mr. Ke Zhu ([email protected]). The package is free for academic usage. You can run it at your own risk. For other purposes, please contact Prof. Jianxin Wu (mail to [email protected]).

Requirements

  • Python 3.7
  • pytorch 1.6
  • torchvision 0.7.0
  • pycocotools 2.0
  • tqdm 4.49.0, pillow 7.2.0

Dataset

We expect VOC2007, COCO2014 and Wider-Attribute dataset to have the following structure:

Dataset/
|-- VOCdevkit/
|---- VOC2007/
|------ JPEGImages/
|------ Annotations/
|------ ImageSets/
......
|-- COCO2014/
|---- annotations/
|---- images/
|------ train2014/
|------ val2014/
......
|-- WIDER/
|---- Annotations/
|------ wider_attribute_test.json/
|------ wider_attribute_trainval.json/
|---- Image/
|------ train/
|------ val/
|------ test/
...

Then directly run the following command to generate json file (for implementation) of these datasets.

python utils/prepare/voc.py  --data_path  Dataset/VOCdevkit
python utils/prepare/coco.py --data_path  Dataset/COCO2014
python utils/prepare/wider.py --data_path Dataset/WIDER

which will automatically result in json files in ./data/voc07, ./data/coco and ./data/wider

Demo

We provide prediction demos of our models. The demo images (picked from VCO2007) have already been put into ./utils/demo_images/, you can simply run demo.py by using our CSRA models pretrained on VOC2007:

CUDA_VISIBLE_DEVICES=0 python demo.py --model resnet101 --num_heads 1 --lam 0.1 --dataset voc07 --load_from OUR_VOC_PRETRAINED.pth --img_dir utils/demo_images

which will output like this:

utils/demo_images/000001.jpg prediction: dog,person,
utils/demo_images/000004.jpg prediction: car,
utils/demo_images/000002.jpg prediction: train,
...

Validation

We provide pretrained models on Google Drive for validation. ResNet101 trained on ImageNet with CutMix augmentation can be downloaded here.

Dataset Backbone Head nums mAP(%) Resolution Download
VOC2007 ResNet-101 1 94.7 448x448 download
VOC2007 ResNet-cut 1 95.2 448x448 download
COCO ResNet-101 4 83.3 448x448 download
COCO ResNet-cut 6 85.6 448x448 download
Wider VIT_B16_224 1 89.0 224x224 download
Wider VIT_L16_224 1 90.2 224x224 download

For voc2007, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20  --load_from MODEL.pth

For coco2014, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 4 --lam 0.5 --dataset coco --num_cls 80  --load_from MODEL.pth

For wider attribute with ViT models, run the following

CUDA_VISIBLE_DEVICES=0 python val.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_B16_MODEL.pth
CUDA_VISIBLE_DEVICES=0 python val.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_L16_MODEL.pth

To provide pretrained VIT models on Wider-Attribute dataset, we retrain them recently, which has a slightly different performance (~0.1%mAP) from what has been presented in our paper. The structure of the VIT models is the initial VIT version (An image is worth 16x16 words: Transformers for image recognition at scale, link) and the implementation code of the VIT models is derived from http://github.com/rwightman/pytorch-image-models/.

Training

VOC2007

You can run either of these two lines below

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20
CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix CutMix_ResNet101.pth

Note that the first command uses the Official ResNet-101 backbone while the second command uses the ResNet-101 pretrained on ImageNet with CutMix augmentation link (which is supposed to gain better performance).

MS-COCO

run the ResNet-101 with 4 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.5 --dataset coco --num_cls 80

run the ResNet-101 (pretrained with CutMix) with 6 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix CutMix_ResNet101.pth

You can feel free to adjust the hyper-parameters such as number of attention heads (--num_heads), or the Lambda (--lam). Still, the default values of them in the above command are supposed to be the best.

Wider-Attribute

run the VIT_B16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0 python main.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

run the VIT_L16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0,1 python main.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

Note that the VIT_L16_224 model consume larger GPU space, so we use 2 GPUs to train them.

Notice

To avoid confusion, please note the 4 lines of code in Figure 1 (in paper) is only used in test stage (without training), which is our motivation. When our model is end-to-end training and testing, multi-head-attention (H=1, H=2, H=4, etc.) is used with different T values. Also, when H=1 and T=infty, the implementation code of multi-head-attention is exactly the same with Figure 1.

Acknowledgement

We thank Lin Sui (http://www.lamda.nju.edu.cn/suil/) for his initial contribution to this project.

Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in πŸ‡°πŸ‡· Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022