Fully convolutional deep neural network to remove transparent overlays from images

Overview

Warning! The architecture used in this project does not generalize well. You may want to check https://dmitryulyanov.github.io/deep_image_prior. This inpainting technique will likely give you better results.

Fully convolutional watermark removal attack

Deep learning architecture to remove transparent overlays from images.

example

Top: left is with watermark, middle is reconstruction and right is the mask the algo predicts (the neural net was never trained using text or this image)

Bottom: Pascal dataset image reconstructions. When the watermarked area is saturated, the reconstruction tends to produce a gray color.

Design choices

At train time, I generate a mask. It is a rectangle with randomly generated parameters (height, width, opacity, black/white, rotation). The mask is applied to a picture and the network is trained to find what was added. The loss is abs(prediction, image_perturbations)**1/2. It is not on the entire picture. An area around the mask is used to make the problem more tractable.

The network architecture does not down-sample the image. The prediction with a down-sampling network were not accurate enough. To have a large enough receptive field and not blow up the compute, I use dilated convolution. So concretely, I have a densenet style block, a bunch of dilated convolutions and final convolution to output a picture (3 channels). I did not spend much time doing hyper-parameters optimization. There's room to get better results using the current architecture.

Limitations: this architectures does not generalize to watermarks that are too different from the one generated with create_mask and it produces decent results only when the overlay is applied in an additive fashion.

Usage

This project uses Tensorflow. Install packages withpip install -r requirements.txt

You will need the jpeg library to compile Pillow from source: sudo apt-get install libjpeg-dev zlib1g-dev

You will also need to download the pascal dataset (used by default) from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ or CIFAR10 python version from https://www.cs.toronto.edu/~kriz/cifar.html (use flag --dataset=dataset_cifar). Make sure the extract the pascal dataset under a directory called data. The project directory should then have the directory cifar-10-batches-py and/or data/VOCdevkit/VOC2012/JPEGImages. If you want to use your own images, place them in data/VOCdevkit/VOC2012/JPEGImages/.

To train the network python3 watermarks.py --logdir=save/. It starts to produce some interesting results after 12000 steps.

To use the network for inference, you can run python watermarks.py --image assets/cat.png --selection assets/cat-selection.png this will create a new image output.png.

Pretrained weights

Here you can find the weights: https://github.com/marcbelmont/cnn-watermark-removal/files/1594328/data.zip put them in /tmp/

Owner
Marc Belmont
Marc Belmont
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022