Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Overview

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Heng (* Joint first authors.)

Instance Shadow Detection aims to find shadow instances, object instances and shadow-object associations; this task benefits many vision applications, such as light direction estimation and photo editing.

In this paper, we present a new single-stage fully convolutional network architecture with a bidirectional relation learning module to directly learn the relations of shadow and object instances in an end-to-end manner.

[ ๐Ÿ“„ Paper] [๐Ÿ‘‡๐Ÿผ Video] Open In Colab

YouTube

Requirement

pip install -r requirement.txt

Note that we tested on CUDA10.2 / PyTorch 1.6.0, CUDA11.1 / PyTorch 1.8.0 and Colab.

Installation

This repo is implemented on AdelaiDet, so first build it with:

$ cd SSIS
$ python setup.py build develop

Dataset and pre-trained model

Method SOAP mask SOAP bbox mask AP box AP
LISA 21.2 21.7 37.0 38.1
Ours 27.4 25.5 40.3 39.6

Download the dataset and model_final.pth from Google drive. Put dataset file in the ../dataset/ and put pretrained model in the tools/output/SSIS_MS_R_101_bifpn_with_offset_class/. Note that we add new annotation file in the SOBA dataset.

Quick Start

Demo

To evaluate the results, try the command example:

$ cd demo
$ python demo.py --input ./samples

Training

$ cd tools
$ python train_net.py \
    --config-file ../configs/SSIS/MS_R_101_BiFPN_with_offset_class.yaml \
    --num-gpus 2 

Evaluation

$ python train_net.py \
    --config-file ../configs/SSIS/MS_R_101_BiFPN_with_offset_class.yaml \
    --num-gpus 2 --resume --eval-only
$ python SOAP.py --path PATH_TO_YOUR_DATASET/SOBA \ 
    --input-name ./output/SSIS_MS_R_101_bifpn_with_offset_class

Citation

If you use LISA, SSIS, SOBA, or SOAP, please use the following BibTeX entry.

@InProceedings{Wang_2020_CVPR,
author    = {Wang, Tianyu and Hu, Xiaowei and Wang, Qiong and Heng, Pheng-Ann and Fu, Chi-Wing},
title     = {Instance Shadow Detection},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
year      = {2020}
}

@InProceedings{Wang_2021_CVPR,
author    = {Wang, Tianyu and Hu, Xiaowei and Fu, Chi-Wing and Heng, Pheng-Ann},
title     = {Single-Stage Instance Shadow Detection With Bidirectional Relation Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
Year      = {2021},
pages     = {1-11}
}
Owner
Steve Wong
Discovering the world. CS Ph.D @ CUHK
Steve Wong
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER ๐ŸฆŒ ๐Ÿฆ’ Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

OฤŸuzhan Ercan 6 Dec 05, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022