A map update dataset and benchmark

Related tags

Deep Learningmuno21
Overview

MUNO21

MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous datasets focus on road extraction, and measure how well a method can infer a road network from aerial or satellite imagery. In contrast, MUNO21 measures how well a method can modify the road network data in an existing digital map dataset to make it reflect the latest physical road network visible from imagery. This task is more practical, since it doesn't throw away the existing map, but also more challenging, as physical roads may be constructed, bulldozed, or otherwise modified.

For more details, see https://favyen.com/muno21/.

This repository contains the code that was used to create MUNO21, as well as code for working with the dataset and computing evaluation metrics.

Requirements

Compiler and application requirements include the following. The versions are what we use and older versions make work as well.

  • Go 1.16+ (with older versions, module-aware mode must be enabled)
  • Python 3.5
  • osmium-tool 2.16.0 (only needed for dataset pre-processing)
  • ImageMagick 6.8 (only needed for dataset pre-processing)

Python requirements are in requirements.txt, and can be installed with:

pip install -r requirements.txt

These requirements should be sufficient to run dataset pre-processing, automatic candidate generation and clustering, visualization, metric evaluation, and post-processing with removing G_extra and fusing new roads into the base map.

To run the included map update methods, a range of additional requirements are needed, depending on the particular method:

  • TensorFlow 1.15 (not 2.0)
  • pytorch 1.7
  • scipy 1.4
  • OpenCV
  • rdp

Dataset

Obtaining the Dataset

Download and extract the MUNO21 dataset:

wget https://favyen.com/files/muno21.zip
unzip muno21.zip

In the commands below, we may assume that you have placed the dataset in /data/:

mv mapupdate/ /data/

The dataset includes aerial image and road network data in large tiles around several cities, along with annotations that specify the map update scenarios. Some steps below will require road network data to be extracted in windows corresponding to the scenarios:

cd muno21/go/
mkdir /data/identity
export PYTHONPATH=../python/
python ../methods/identity/run.py /data/graphs/graphs/ /data/annotations.json /data/identity/

Data Format

Aerial imagery is available as JPEG images in the naip/jpg/ folder. These images are obtained from NAIP.

Road networks are available as .graph files in the graphs/graphs folder. See https://favyen.com/muno21/graph-format.txt for a description of the data format of these files. Note that, in contrast to some other datasets, road networks are NOT represented as images -- instead, they are undirected spatial networks, where vertices are labeled with (x,y) coordinates and edges correspond to road segments. The (x,y) coordinates indicate pixels in the corresponding JPEG image.

Note that two versions of the road network are available in this format.

  • {region_x_y_time}.graph: only includes public roads suitable for motor vehicles.
  • {region_x_y_time}_all.graph: includes most other "ways" that appear in OpenStreetMap.

The original OpenStreetMap data is available in the graphs/osm/ folder, in files encoded under the OSM PBF format. Methods may take advantage of the additional information in these files, such as various road attributes. To convert longitude-latitude coordinates to pixel coordinates, see go/lib/regions.go and go/preprocess/osm_to_graph.go.

Task

The MUNO21 dataset includes 1,294 map update scenarios. Each scenario specifies a pre-change timestamp, post-change timestamp, and a bounding box window where some change occurred.

The input is aerial imagery from each of four years, along with road network data from a specific pre-change year (usually 2012 or 2013).

The ground truth label is the road network from a specific post-change year (usually 2018 or 2019) inside the bounding box window.

During training, a method may use all aerial imagery and road network data from the training regions (see train.json). To facilitate self-supervised learning, methods may also use all aerial imagery in the test regions (see test.json), but only road network data from 2012 or 2013 in those regions.

During inference, for a given scenario, a method has access to the same data that is available during training. It additionally has access to road network data from all regions at the pre-change timestamp, although since this is usually 2012 or 2013, this usually does not actually provide any more data.

The method should output a road network corresponding to the physical roads visible in the aerial imagery at the post-change timestamp inside the bounding box window.

Metrics

Methods are compared in terms of their precision-recall curves.

Recall measures how much closer the output road networks are to the ground truth data (post-change road network) than the pre-change road networks. Two alternative ways of comparing road networks, PixelF1 and APLS, are used.

Precision measures how frequently a method makes incorrect modifications to the road network in scenarios where no change has occurred between the pre- and post-change timestamps.

A method may expose a single real-valued parameter that provides a tradeoff between precision and recall. For example, a method that infers road networks using image segmentation may expose the segmentation probability confidence threshold for the "road" class as a parameter -- increasing this threshold generally provides higher precision but lower recall. Methods are compared in terms of their precision-recall curves when varying this parameter.

Scenario Specification

Scenarios are specified in the annotations.json file. Let annotation refer to one annotation JSON object.

Each scenario specifies a spatial window in pixel coordinates where the map has changed: annotation['Cluster']['Window']. A method may use imagery and road network data outside that window, but its output road network should span that window plus 128-pixel padding; it will be evaluated only inside the window (with no padding), but the padding ensures that the evaluation metrics are computed correctly along the boundary of the window.

Currently, the pre-change timestamp is always 2013, and the post-change timestamp is always the year of the most recent aerial image (either 2018 or 2019).

Infer Road Networks

Refer to the documentation in methods/{classify,recurrentunet,road_connectivity,roadtracerpp,sat2graph}.

Each method besides classify is taken from a publicly available implementation (see README in each method directory.) We make minor changes to make them work with MUNO21. We also find many bugs in road_connectivity which we have to manually fix, and we adapt Sat2Graph to work with Python3. road_connectivity and recurrentunet will only work with Python 2.7.

Post-process Inferred Road Networks

Applying a method to infer road networks should yield a directory containing subdirectories (corresponding to different confidence thresholds) that each contain .graph files. Most methods require post-processing under our map fusion approach before evaluation.

Suppose that you have computed the outputs of MAiD in /data/maid/out/. Then, for each confidence threshold:

mkdir /data/maid/fuse/
mkdir /data/maid/fuse/10/
go run postprocess/fuse.go /data/annotations.json normal /data/identity/ /data/maid/out/10/ /data/maid/fuse/10/

Optionally, visualize an inferred road network. Below, 6 can be changed to any annotation index corresponding to /data/annotations.json.

go run vis/visualize_inferred.go /data/annotations.json 6 /data/naip/jpg/ /data/graphs/graphs/ /data/maid/fuse/10/ default ./

The command above should produce an image ./6.jpg.

Evaluation

For each confidence threshold, run e.g.:

python metrics/apls.py /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json
go run metrics/geo.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

Above, the first command computes APLS (which takes a long time to run) while the second computes PixelF1 (aka GEO metric). These commands produce scores.json and geo.json files respectively in the /data/maid/fuse/10/ directory containing metric outputs for each test scenario.

To obtain error rate:

go run metrics/error_rate.go /data/annotations.json /data/maid/fuse/10/ /data/graphs/graphs/ /data/test.json

To produce a precision-recall curve from the scores across multiple confidence thresholds, run:

python metrics/score_details.py /data/annotations.json /data/maid/fuse/{10,20,30,40,50}/geo.json

Building the Dataset

The documentation below outlines how the dataset was built. You do not need to follow these steps unless you are trying to replicate the dataset from raw NAIP aerial images from Google EarthEngine and OpenStreetMap history dumps.

Dataset Pre-processing

We preprocess raw NAIP and OSM data using the code in go/preprocess.

  1. Obtain NAIP images from Google EarthEngine.
  2. Obtain us-internal.osh.pbf from https://download.geofabrik.de/north-america/us.html
  3. Extract history around individual cities: go run preprocess/osm_space_filter.go /data/graphs/big/us-internal.osh.pbf /data/graphs/history/
  4. Extract OSM dumps at different times: python3 preprocess/osm_time_filter.py /data/graphs/history/ /data/graphs/osm/
  5. Convert NAIP images to JPG: python3 preprocess/tif_to_jpg.py /data/naip/tif/ /data/naip/jpg/
  6. Record the NAIP image sizes (needed for coordinate transforms and such): python3 preprocess/save_image_sizes.py /data/naip/jpg/ /data/sizes.json
  7. Convert to MUNO21 .graph file format: go run preprocess/osm_to_graph.go /data/graphs/osm/ /data/graphs/graphs/
  8. Randomly split the cities into train/test: python3 preprocess/pick_train_test.py /data/graphs/history/ /data/
  9. (Optional) Visualize the graph and image extracted at a tile: python3 vis/vis.py /data/naip/jpg/ny_1_0_2019.jpg /data/graphs/graphs/ny_1_0_2018-07-01.graph out.jpg

Candidate Generation and Clustering

We then generate and cluster candidates.

  1. Candidate generation: go run annotate/find_changed_roads.go /data/graphs/graphs/ /data/changes/
  2. Clustering: go run annotate/cluster_changes.go /data/changes/ /data/cluster/
  3. No-change windows: go run annotate/find_nochange.go /data/graphs/graphs/ /data/cluster-nochange/
  4. Output visualizations for annotation: go run annotate/visualize_clusters.go /data/cluster/ /data/naip/jpg/ /data/graphs/graphs/ /data/vis/

Annotation Post-processing

After using the annotation tools like go/annotate, we process the output annotations into JSON file:

  1. Convert annotation data to JSON: go run process_annotations.go /data/cluster/ /data/annotations.txt /data/cluster-nochange/ /data/annotations.json
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023