StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Overview

StocksMA

Creating easier access to the Moroccan stock market data

Language PyPI Star Badge GitHub license Check Code

What is StocksMA ?

StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks. It tries to cover potentially valuable and interesting data points.

The package include functions to extract price data from Leboursier, financial ratios(income statement, balance sheet, cash flow) from MarketWatch, and profile data from WSJ

Note: Sometimes, some functions may fail to get the data from some sources due to WAF protection.

Installation

Python3 is required.

$ pip install StocksMA

Usage

Import the package

>> import StocksMA as stm

Get all availabale tickers

Show available tickers with the full name of the company Example:

stm.get_tickers()
ADH / Douja Promotion Groupe Addoha
ADI / Alliances Developpement Immobilier S.A.
AFI / Afric Industries S.A.
AFM / AFMA S.A.
.
.
.
WAA / Wafa Assurance S.A.
ZDJ / Zellidja S.A.

Get price data

Get historical OHLCV data for a given symbol(s)

Args:

  • tickers Union[str, List[str]] : List or str of companies names or ticker symbols(e.g. ['maroc telecom', 'MNG'] or 'CIH')
  • start_date str: (YYYY-MM-DD) Starting date to pull data from, limited to a maximum of six year
  • end_date str: (YYYY-MM-DD) Ending date. Defaults to the current local date

Returns:

  • pd.DataFrame: Dataframe of historical OHLCV data

Example:

# Get price data of multiple companies
stm.get_price_data(['CIH','maroc telecom', 'involys'], start_date='2020-11-14', end_date='2022-02-14')
Close High Low Open Volume
Company Date
CIH P 2020-11-16 248.15 248.15 248.00 248.00 8
2020-11-17 250.00 250.00 248.00 248.10 220
2020-11-19 245.20 248.00 245.10 248.00 133
... ... ... ... ... ...
INVOLYS P 2022-02-08 131.95 131.95 131.95 131.95 5
2022-02-09 131.95 131.95 131.90 131.95 100
2022-02-11 131.90 131.90 131.00 131.00 4

[840 rows x 5 columns]

# Get price data of single company
stm.get_price_data('involys', start_date='2020-11-14', end_date='2022-02-14')
Open High Low Close Volume
Company Date
INVOLYS P 2020-11-16 119.50 121.00 119.50 121.00 11
2020-11-17 118.60 121.00 118.60 121.00 22
2020-11-19 121.00 121.00 121.00 121.00 1
... ... ... ... ... ...
2022-02-09 131.95 131.95 131.90 131.95 100
2022-02-11 131.00 131.90 131.00 131.90 4

[253 rows x 5 columns]


Get session information

Get data related to the current trading session of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of session data

Example:

stm.get_session_info('involys')
Name Name_2 ISIN Number of Shares Close Previous Close Market Cap Quotation Datetime Change Volume Change Volume in Shares Volume Open Low High
1 INVOLYS P INVOLYS MA0000011579 382716 109.950 109.95 42079624.20 18/03/2022 à 15:16 0.00 0.00 5387 49 109.400 109.400 109.950

Get intraday price data

Get intraday price data of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of intraday price data

Example:

stm.get_data_intraday('CIH')
prices
Datetime
2022-03-18 09:30:00 130.20
2022-03-18 10:02:00 131.00
2022-03-18 10:06:00 131.00
2022-03-18 10:07:00 131.00
2022-03-18 10:17:00 131.15
2022-03-18 10:24:00 131.15
2022-03-18 10:30:00 131.15
2022-03-18 10:41:00 131.40
2022-03-18 11:07:00 131.40
2022-03-18 11:15:00 131.40
2022-03-18 12:24:00 131.45
2022-03-18 12:31:00 131.40
2022-03-18 13:25:00 131.20
2022-03-18 14:48:00 131.25
2022-03-18 15:07:00 131.40
2022-03-18 15:19:00 131.25
2022-03-18 15:30:00 131.40

Get Ask Bid data

Get ask bid data of a given symbol

Args:

  • company str: Company name or ticker symbol(e.g. 'maroc telecom', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of ask bid data

Example:

stm.get_ask_bid('CIH')
bidValue bidQte askValue askQte bidOrder askOrder
0 340.1 3 350.0 248 1 2
1 340.0 950 352.0 702 2 1
2 337.1 4 354.5 10 1 1
3 336.2 10 354.9 3 1 1
4 335.0 10 355.0 290 1 2
5 334.0 4 356.0 200 1 2
6 332.0 6 357.9 2 2 1
7 330.5 10 358.0 482 1 2
8 330.0 274 359.0 59 3 1
9 321.5 300 359.4 20 1 1

Get balance sheet

Get balance sheet data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of balance sheet data

Example:

# Annual balance sheet
stm.get_balance_sheet('ATW', frequency='annual')
2017 2018 2019 2020 2021
Item
Assets Total Cash & Due from Banks 18.22B 18.54B 24.73B 26.33B 25.74B
Cash & Due from Banks Growth - 1.71% 33.42% 6.48% -2.26%
Investments - Total 116.38B 119.86B 123.75B 137.55B 158.73B
Investments Growth - 2.99% 3.25% 11.15% 15.40%
Trading Account Securities - - 54.32B 58.67B 69.91B
... ... ... ... ... ...
Liabilities & Shareholders' Equity Total Shareholders' Equity / Assets 8.40% 8.73% 8.94% 8.41% 8.80%
Return On Average Total Equity - - - - 10.26%
Accumulated Minority Interest 6.44B 5.95B 6.3B 6.49B 7.34B
Total Equity 46.06B 50.47B 53.93B 54.29B 59.79B
Liabilities & Shareholders' Equity 471.47B 509.93B 532.6B 568.11B 596.33B

[74 rows x 5 columns]

# Quarter balance sheet
stm.get_balance_sheet('ATW', frequency='quarter')
30-Jun-2021 30-Sep-2021 31-Dec-2020 31-Dec-2021 31-Mar-2021
Item
Assets Total Cash & Due from Banks 23.41B 20.2B 26.33B 25.74B 22.79B
Cash & Due from Banks Growth 2.74% -13.73% - 27.43% -13.47%
Investments - Total 148.98B 155.57B 137.55B 158.73B 141.76B
Investments Growth 5.10% 4.42% - 2.04% 3.06%
Trading Account Securities 63.98B 64.94B 58.67B 69.91B 61.8B
... ... ... ... ... ...
Liabilities & Shareholders' Equity Total Shareholders' Equity / Assets 8.47% 8.73% 8.41% 8.80% 8.48%
Return On Average Total Equity - - - 10.26% -
Accumulated Minority Interest 6.88B 7.13B 6.49B 7.34B 6.69B
Total Equity 56B 58.29B 54.29B 59.79B 54.45B
Liabilities & Shareholders' Equity 579.79B 586.09B 568.11B 596.33B 562.95B

[74 rows x 5 columns]


Get income statement

Get income statement data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of income statement data

Example:

# Annual income statement
stm.get_income_statement('IAM', frequency='annual')
Item 2017 2018 2019 2020 2021
Sales/Revenue 34.96B 36.03B 36.52B 36.77B 35.79B
Sales Growth - 3.06% 1.35% 0.69% -2.66%
Cost of Goods Sold (COGS) incl. D&A 15.69B 15.72B 16.19B 15.93B 15.05B
COGS Growth - 0.24% 2.95% -1.57% -5.56%
COGS excluding D&A 9.08B 8.9B 8.77B 8.42B 7.99B
Non Operating Income/Expense (57M) 201M (49M) (1.49B) (165M)
... ... ... ... ... ...
Equity in Affiliates (Pretax) - - - - -
Interest Expense 586M 642M 756M 888M 826M
Interest Expense Growth - 9.56% 17.76% 17.46% -6.98%
EBITDA 17.03B 17.87B 15.65B 19.53B 18.63B
EBITDA Growth - 4.93% -12.44% 24.80% -4.62%
EBITDA Margin - - - - 52.05%
# Quarter income statement
stm.get_income_statement('IAM', frequency='quarter')
Item 31-Dec-2019 30-Jun-2020 31-Dec-2020 30-Jun-2021 31-Dec-2021
Sales/Revenue 18.67B 18.32B 18.45B 17.78B 18.01B
Sales Growth - -1.87% 0.67% -3.61% 1.29%
Cost of Goods Sold (COGS) incl. D&A 11.53B 4.92B 7.74B 7.9B 7.57B
COGS Growth - -57.33% 57.23% 2.02% -4.08%
COGS excluding D&A 4.42B 4.16B 4.26B 4.09B 3.91B
Depreciation & Amortization Expense 7.12B 759M 3.48B 3.81B 3.67B
... ... ... ... ... ...
EBITDA 9.49B 6.6B 9.66B 9.37B 9.68B
EBITDA Growth - -30.48% 46.52% -3.07% 3.38%
EBITDA Margin - - - - 53.76%

Get cash flow

Get cash flow data of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')
  • frequency str: Display either quarter or annual data. Defaults to "annual".

Returns:

  • pd.DataFrame: Dataframe of cash flow data

Example:

# Annual cash flow
stm.get_cash_flow('IAM', frequency='annual')
2017 2018 2019 2020 2021
Item
Operating Activities Net Income before Extraordinaries 10.31B 11.05B 8.23B 12.02B 11.57B
Net Income Growth - 7.20% -25.52% 46.01% -3.70%
Depreciation, Depletion & Amortization 6.61B 6.82B 7.42B 7.51B 7.06B
... ... ... ... ... ...
Net Operating Cash Flow 14.13B 13.95B 14.81B 10.48B 12.87B
Net Operating Cash Flow Growth - -1.32% 6.22% -29.28% 22.80%
Net Operating Cash Flow / Sales 40.42% 38.71% 40.57% 28.49% 35.95%
Investing Activities Capital Expenditures (8.37B) (8.08B) (7.95B) (4.14B) (5.29B)
Capital Expenditures Growth - 3.52% 1.56% 47.91% -27.75%
Capital Expenditures / Sales -23.94% -22.41% -21.77% -11.26% -14.78%
... ... ... ... ... ...
Net Investing Cash Flow (8.07B) (8.37B) (8.83B) (4.23B) (5.31B)
Net Investing Cash Flow Growth - -3.77% -5.42% 52.03% -25.42%
Net Investing Cash Flow / Sales -23.07% -23.23% -24.17% -11.51% -14.83%
Financing Activities Cash Dividends Paid - Total (5.6B) (5.73B) (6B) (4.87B) (3.53B)
Common Dividends (5.6B) (5.73B) (6B) (4.87B) (3.53B)
Preferred Dividends - - - - -
... ... ... ... ... ...
Free Cash Flow 5.76B 5.87B 6.87B 6.34B 7.58B
Free Cash Flow Growth - 1.89% 16.91% -7.72% 19.57%
Free Cash Flow Yield - - - - 3.30
# Quarter cash flow
stm.get_cash_flow('IAM', frequency='quarter')
31-Dec-2019 30-Jun-2020 31-Dec-2020 30-Jun-2021 31-Dec-2021
Item
Operating Activities Net Income before Extraordinaries 2.37B 5.84B 6.18B 5.56B 6.02B
Net Income Growth - 146.35% 5.93% -10.11% 8.26%
Depreciation, Depletion & Amortization 3.81B (759M) 8.27B 3.81B 3.25B
... ... ... ... ... ...
Net Operating Cash Flow 8.95B 1.86B 8.62B 5.81B 7.05B
Net Operating Cash Flow Growth - -79.27% 364.44% -32.56% 21.31%
Net Operating Cash Flow / Sales 47.94% 10.13% 46.73% 32.69% 39.16%
Investing Activities Capital Expenditures (3.73B) (2.29B) (1.85B) (2.74B) (2.55B)
Capital Expenditures Growth - 38.69% 18.93% -47.57% 6.65%
Capital Expenditures / Sales -19.98% -12.48% -10.05% -15.39% -14.18%
... ... ... ... ... ...
Net Investing Cash Flow (3.56B) (2.4B) (1.84B) (2.76B) (2.55B)
Net Investing Cash Flow Growth - 32.71% 23.40% -50.11% 7.37%
Net Investing Cash Flow / Sales -19.08% -13.08% -9.95% -15.50% -14.18%
Financing Activities Cash Dividends Paid - Total (271M) - (4.87B) - (3.53B)
Common Dividends (271M) - (4.87B) - (3.53B)
Preferred Dividends - - - - -
... ... ... ... ... ...
Free Cash Flow 5.22B (431M) 6.77B 3.08B 4.5B
Free Cash Flow Growth - -108.25% 1,669.84% -54.52% 46.18%
Free Cash Flow Yield - - - - 3.30

Get quote table

Get important data about a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of data about the ticker

Example:

stm.get_quote_table('ATW')
Key Data Value
0 Open 473.00
1 Day Range 464.00 - 473.00
2 52 Week Range N/A
3 Market Cap 93.69B
4 Shares Outstanding 215.14M
5 Public Float 69.09M
6 Beta N/A
7 Rev. per Employee 1.933M
8 P/E Ratio 18.04
9 EPS 25.72
10 Yield 3.23%
11 Dividend 6.75
12 Ex-Dividend Date Jul 5, 2021
13 Short Interest N/A
14 % of Float Shorted N/A
15 Average Volume 160.21K

Get market status

Get status of the Moroccan market Returns:

  • str: Status of the market(Open/Closed)

Example:

stm.get_market_status()
Closed

Get company officers

Get company officers of a given symbol

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of names and roles of the officers

Example:

stm.get_company_officers('MNG')
Name Role
0 Imad Toumi Chairman & Chief Executive Officer
1 Mouna Mahfoud Executive Director-Finance
2 Naoual Zine General Manager-Reminex & Projects
3 Lhou Maacha Executive Director-Exploration
4 Youssef el Hajjam General Manager-Bases Metal Operations
5 Karim Khettouch Director
6 Samir Oudghiri Idrissi Director
7 Bassim Jaï Hokimi Director
8 Hassan Ouriagli Director
9 Amina Benkhadra Director
10 Noufissa Kessar Director
11 Mohamed Amine Afsahi Executive Director-Marketing & Commercial
12 Laila Karam Investor Relations Contact
13 Zakaria Rbii Executive Director-HR, Communication & Develop...
14 Frédéric Bernard Tona Independent Director

Get company information

Get information related to the company's location, adresse...

Args:

  • company str: Ticker symbol(e.g. 'IAM', 'MNG')

Returns:

  • pd.DataFrame: Dataframe of information related to the company (e.g. Name, Adresse, Phone...)

Example:

stm.get_company_info('MNG')
Item Value
0 Name Managem
1 Adresse Twin Center, Tower A Angle Boulevards Zerktoun...
2 Phone +212 522 956-565
3 Industry General Mining
4 Sector Basic Materials/Resources
5 Description Managem SA engages in mining and hydrometallur...

License

This project is licensed under the terms of the MIT license.

Owner
Salah Eddine LABIAD
Data Science student and Cybersecurity enthusiast.
Salah Eddine LABIAD
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Ian Covert 130 Jan 01, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022