Scheme for training and applying a label propagation framework

Overview

Factorisation-based Image Labelling

Overview

This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some functionality from SPM12 is required for handling images (available from https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It is still work in progress, so don't expect too much from it until it has been properly debugged and refactored, as well as more extensively tested with different settings.

Rationale

The approach assumes that segmented (into GM, WM and background) images have been aligned, so does not require the additional complexity of a convolutional approach. The use of segmented images is to make the approach less dependent on the particular image contrasts so it generalises better to a wider variety of brain scans. The approach assumes that there are only a relatively small number of labelled images, but many images that are unlabelled. It therefore uses a semi-supervised learning approach, with an underlying Bayesian generative model that has relatively few weights to learn.

Model

The approach is patch based. For each patch, a set of basis functions model both the (categorical) image to label, and the corresponding (categorical) label map. A common set of latent variables control the two sets of basis functions, and the results are passed through a softmax so that the model encodes the means of a multinouli distribution (Böhning, 1992; Khan et al, 2010).

Continuity over patches is achieved by modelling the probability of the latent variables within each patch conditional on the values of the latent variables in the six adjacent patches, which is a type of conditional random field (Zhang et al, 2015; Brudfors et al, 2019). This model (with Wishart priors) gives the prior mean and covariance of a Gaussian prior over the latent variables of each patch. Patches are updated using an iterative red-black checkerboard scheme.

Labelling

After training, labelling a new image is relatively fast because optimising the latent variables can be formulated within a scheme similar to a recurrent Res-Net (He et al, 2016).

References

  • Böhning D. Multinomial logistic regression algorithm. Annals of the institute of Statistical Mathematics. 1992 Mar 1;44(1):197-200.
  • Brudfors M, Balbastre Y & Ashburner J. Nonlinear Markov Random Fields Learned via Backpropagation. Accepted for 26th international conference on Information Processing in Medical Imaging (IPMI 2019). Preprint available from http://arxiv.org/abs/1902.10747 .
  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 770-778).
  • Khan ME, Bouchard G, Murphy KP, Marlin BM. Variational bounds for mixed-data factor analysis. In Advances in Neural Information Processing Systems 2010 (pp. 1108-1116).
  • Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE international conference on computer vision 2015 (pp. 1529-1537).

Acknowledgements

This work was funded by the EU Human Brain Project’s Grant Agreement No 785907 (SGA2).

You might also like...
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-driven approaches built around these algorithms enable the simplification of creating faster and smaller models for the ML performance community at large.

Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

⚡ Fast • 🪶 Lightweight • 0️⃣ Dependency • 🔌 Pluggable • 😈 TLS interception • 🔒 DNS-over-HTTPS • 🔥 Poor Man's VPN • ⏪ Reverse & ⏩ Forward • 👮🏿
Releases(0.1.1)
Owner
Wellcome Centre for Human Neuroimaging
Wellcome Centre for Human Neuroimaging
Wellcome Centre for Human Neuroimaging
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023