Learning Modified Indicator Functions for Surface Reconstruction

Related tags

Deep LearningLMIRecon
Overview

Learning Modified Indicator Functions for Surface Reconstruction

In this work, we propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals. Inspired by Gauss Lemma in potential energy theory, we design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds. Our method generates smooth surfaces with high normal consistency. Our implementation is based on Points2Surf.

Dependencies

Our work requires Python>=3.7, Pytorch>=1.6 and CUDA>=10.2. To build all the dependencies, execute the following command:

pip install -r requirements.txt

Start and Test

To generate Fig. 1 to Fig. 12 in our work, execute the following command:

sh run_grsi.sh

The results will be placed in ./results/{model_name}/{dataset_name}/rec/mesh after the execution is completed. It takes hundreds of seconds for generating a shape on average, depending on your environments (about 200s with test batchsize 500 on Tesla V100 GPUs).

To generate Fig. 13, execute the following command:

sh run_sparse.sh

This procedure of this example is long because we need large query threshold for sparse samplings.

Models and Datasets

You can download all the models and datasets of our work from here. To conduct different experiments, you need to match the prefixes and modelpostfixes of .sh files in ./experiments. We also put some examples in this folder. The prefix 'lmi' is used for the experiments in Section 5.2 and 5.4. The Prefixes 'lmi_ablation' and 'lmi_no_sef' are used for Section 5.3. The Prefixes 'lmi_holes' and 'lmi_sparse' are used for Section 5.5.

Train

Since the training set is large, we seperate it into four volumes named ABC.zip, ABC.z01, ABC.z02 and ABC.z03. You need to download all of them and merge them with the following command in Linux (or directly unzip ABC.zip in Windows).

zip ABC.zip ABC.z01 ABC.z02 ABC.z03 -s=0 --out ABC_train.zip

Then you can unzip the merged file and put them into ./datasets.

unzip ABC_train.zip

Execute the following command to train.

sh train.sh

You can choose an appropriate batchsize for training according to your environment. For example, you can set it to 600 for 4 RTX 2080Ti GPUs.

Citation

This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! ๐Ÿ–Š๏ธ Natural language processing

Gradio 96 Dec 30, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data ๐ŸŒˆ

Rainbow ๐ŸŒˆ An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023