Official repository of the paper 'Essentials for Class Incremental Learning'

Overview

Essentials for Class Incremental Learning

Official repository of the paper 'Essentials for Class Incremental Learning'

This Pytorch repository contains the code for our work Essentials for Class Incremental Learning.

This work presents a straightforward class-incrmental learning system that focuses on the essential components and already exceeds the state of the art without integrating sophisticated modules.

Requirements

To install requirements:

pip install -r requirements.txt

Training and Evaluation (CIFAR-100, ImageNet-100, ImageNet-1k)

Following scripts contain both training and evaluation codes. Model is evaluated after each phase in class-IL.

with Knowledge-distillation (KD)

To train the base CCIL model:

bash ./scripts/run_cifar.sh
bash ./scripts/run_imagenet100.sh
bash ./scripts/run_imagenet1k.sh

To train CCIL + Self-distillation

bash ./scripts/run_cifar_w_sd.sh
bash ./scripts/run_imagenet100_w_sd.sh
bash ./scripts/run_imagenet1k_w_sd.sh

Results (CIFAR-100)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 66.44 64.86
CCIL + SD 67.17 65.86

Results (ImageNet-100)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 77.99 75.99
CCIL + SD 79.44 76.77

Results (ImageNet)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 67.53 65.61
CCIL + SD 68.04 66.25

List of Arguments

  • Distillation Methods

    • Knowledge Distillation (--kd, --w-kd X), X is the weightage for KD loss, default=1.0
    • Representation Distillation (--rd, --w-rd X), X is the weightage for cos-RD loss, default=0.05
    • Contrastive Representation Distillation (--nce, --w-nce X), only valid for CIFAR-100, X is the weightage of NCE loss
  • Regularization for the first task

    • Self-distillation (--num-sd X, --epochs-sd Y), X is number of generations, Y is number of self-distillation epochs
    • Mixup (--mixup, --mixup-alpha X), X is mixup alpha value, default=0.1
    • Heavy Augmentation (--aug)
    • Label Smoothing (--label-smoothing, --smoothing-alpha X), X is a alpha value, default=0.1
  • Incremental class setting

    • No. of base classes (--start-classes 50)
    • 5-phases (--new-classes 10)
    • 10-phases (--new-classes 5)
  • Cosine learning rate decay (--cosine)

  • Save and Load

    • Experiment Name (--exp-name X)
    • Save checkpoints (--save)
    • Resume checkpoints (--resume, --resume-path X), only to resume from first snapshot

Citation

@article{ccil_mittal,
    Author = {Sudhanshu Mittal and Silvio Galesso and Thomas Brox},
    Title = {Essentials for Class Incremental Learning},
    journal = {arXiv preprint arXiv:2102.09517},
    Year = {2021},
}
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022