D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Related tags

Deep LearningISC2021
Overview

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp

This is the source code of our 3rd place solution to matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. This repo will tell you how to get our result step by step.

Method Overview

For the Matching Track task, we use a global and local dual retrieval method. The global recall model is EsViT, the same as task Descriptor Track. The local recall used SIFT point features. As shown in the figure, our pipeline is divided into four modules. When using an image for query, it is first put into the preprocessing module for overlay detection. Then the global and local features are extracted and retrieved in parallel. There are three recall branches: global recall, original local recall and cropped local recall. The last module will compute the matching score of three branches and merge them into the final result.

method_overview

Installation

Please install python 3.7, Pytorch 1.8 (or higher version) and some packages according to requirements.txt.

gcc version 7.3.1

We run on a 8GPUs (Tesla V100-SXM2-32GB, 32510.5MB), 48CPUs and 300G Memory machine.

Get Result Demo

Now we will describe how to get our result, we use a query image Q24789.jpg as input for demo.

step1: query images preprocess

We train a yolov5 to detect the crop augment in query images. The detils are in README.md of Team: AITechnology in task Descriptor Track. Due to different parameters, we need to preprocess the local recall and global recall respectively.

python preprocessing.py $origin_image_path $save_image_result_path

e.g.
______
cd preprocess
python preprocessing_global.py ../data/queryimages/ ../data/queryimages_crop_global/
python preprocessing_local.py ../data/queryimages/ ../data/queryimages_crop_local/

*note: If Arial.ttf download fails, please copy the local yolov5/Arial.ttf to the specified directory following the command line prompt. cp yolov5/Arial.ttf /root/.config/Ultralytics/Arial.ttf

step2: get original image's local feature

First export the path.

cd local_fea/feature_extract
export LD_LIBRARY_PATH=./extLib/ 

Run the executable program localfea_extract_sift to get the SIFT local point feature, and out to a txt file.

Usage: ./localfea_extract_sift 
    
     
     
      

e.g.
./localfea_extract_sift Q24789 ../../data/queryimages/Q24789.jpg ../feature_out/Q24789.txt

     
    
   

Or you can extract all query images by a list.

python multi_extract_sift.py ../../data/querylist_demo.txt ../../data/queryimages/ ../feature_out/

For example, two point features in a image result txt file are:

Q24789_0_3.1348_65.589_1.76567_-1.09404||0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,13,0,0,0,0,0,0,16,28,7,5,0,0,0,0,0,0,0,0,20,12,0,0,23,5,0,0,29,29,7,12,56,29,5,0,0,11,7,20,38,45,10,0,0,0,0,14,0,0,0,0,39,56,36,8,39,14,0,0,46,56,21,24,56,22,0,0,5,8,8,39,38,11,0,0,0,0,19,47,0,0,0,0,8,56,56,7,37,0,0,0,10,52,56,56,52,0,0,0,0,0,35,56,11,0,0,0,0,0,54,45
Q24789_1_8.26344_431.038_1.75921_1.22328||42,27,0,4,11,12,9,14,49,28,0,6,17,25,18,14,45,37,4,0,12,45,8,9,8,17,9,0,27,50,6,0,41,24,0,0,10,14,19,20,50,34,0,6,20,22,17,21,36,22,4,4,43,50,15,12,26,32,8,0,17,50,17,6,28,12,0,0,0,21,31,21,50,14,0,0,17,31,23,38,19,10,9,17,50,50,14,15,17,23,13,10,19,45,26,8,11,11,0,0,0,6,6,0,28,13,0,0,8,20,12,15,11,9,0,0,24,47,12,9,18,38,22,6,13,28,10,8
...

step3: retrieval use original image local feature

We use the GPU Faiss to retrieval, because there are about 600 million SIFT point features in reference images. They need about 165G GPU Memory for Float16 compute.

Firstly, you need extract all local features of reference images by multi_extract_sift.py and store them in uint8 type to save space. (ref_sift_fea_300.pkl (68G) and ref_sift_name_300.pkl (25G))

Then get original image local recall result:

cd local_fea/faiss_search
python db_search.py ../feature_out/ ../faiss_out/local_pair_result.txt

For example, the result txt file ../faiss_out/local_pair_result.txt:

Q24789.jpg,R540735.jpg

step4: get crop image's local feature (only for part images which have crop result)

Same as step2, but only use the croped image in ../../preprocess/local_crop_list.txt.

cd local_fea/feature_extract
python multi_extract_sift.py ../../preprocess/local_crop_list.txt ../../data/queryimages_crop_local/ ../crop_feature_out/

step5: retrieval use crop image local feature (only for part images which have crop result)

Same as step3:

cd local_fea/faiss_search
python db_search.py ../crop_feature_out/ ../crop_faiss_out/crop_local_pair_result.txt

step6: get image's global feature

We train a EsViT model (follow the rules closely) to extract 256 dims global features, the detils are in README.md of Team: AITechnology in task Descriptor Track.

*note: for global feature, if the image have croped image, we will extract feature use the croped image, else use the origin image.

Generate h5 descriptors for all query images and reference images as submission style:

cd global_fea/feature_extract
python predict_FB_model.py --model checkpoints/EsViT_SwinB_finetune_bs8_lr0.0001_adjustlr_0_margin1.0_dataFB_epoch200.pth  --save_h5_name fb_descriptors_demo.h5  --model_type EsViT_SwinB_W14 --query ./query_list_demo.txt --total ./ref_list_demo.txt

*note: The --query and --total parameters are specified as query list and reference list, respectively.

The h5 file will be saved in ./h5_descriptors/fb_descriptors.h5

step7: retrieval use image's global feature

We have already added our h5 file in phase 1. Use faiss to get top1 pairs.

cd global_fea/faiss_search
python faiss_topk.py ../feature_extract/h5_descriptors/fb_descriptors.h5 ./global_pair_result.txt

step8: compute match score and final result

We use the SIFT feature + KNN-matching (K=2) to compute match point as score. We have already compiled it into an executable program.

Usage: ./match_score 
    
     
      
      

      
     
    
   

For example, to get original image local pairs score:

cd match_score
export LD_LIBRARY_PATH=../local_fea/feature_extract/extLib/
./match_score ../local_fea/faiss_out/local_pair_result.txt ../data/queryimages ../data/referenceimages/ ./local_pair_score.txt

The other two recall pairs are the same:

global: 
./match_score ../global_fea/faiss_search/global_pair_result.txt ../data/queryimages_crop_global ../data/referenceimages/ ./global_pair_score.txt

crop local:
./match_score ../local_fea/crop_faiss_out/crop_local_pair_result.txt ../data/queryimages_crop_local ../data/referenceimages/ ./crop_local_pair_score.txt

Finally, the three recall pairs are merged by:

python merge_score.py ./final_result.txt

Others

If you have any problem or error during running code, please email to us.

Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022