Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Overview

Ravens - Transporter Networks

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks, each with (i) a scripted oracle that provides expert demonstrations (for imitation learning), and (ii) reward functions that provide partial credit (for reinforcement learning).


(a) block-insertion: pick up the L-shaped red block and place it into the L-shaped fixture.
(b) place-red-in-green: pick up the red blocks and place them into the green bowls amidst other objects.
(c) towers-of-hanoi: sequentially move disks from one tower to another—only smaller disks can be on top of larger ones.
(d) align-box-corner: pick up the randomly sized box and align one of its corners to the L-shaped marker on the tabletop.
(e) stack-block-pyramid: sequentially stack 6 blocks into a pyramid of 3-2-1 with rainbow colored ordering.
(f) palletizing-boxes: pick up homogeneous fixed-sized boxes and stack them in transposed layers on the pallet.
(g) assembling-kits: pick up different objects and arrange them on a board marked with corresponding silhouettes.
(h) packing-boxes: pick up randomly sized boxes and place them tightly into a container.
(i) manipulating-rope: rearrange a deformable rope such that it connects the two endpoints of a 3-sided square.
(j) sweeping-piles: push piles of small objects into a target goal zone marked on the tabletop.

Some tasks require generalizing to unseen objects (d,g,h), or multi-step sequencing with closed-loop feedback (c,e,f,h,i,j).

Team: this repository is developed and maintained by Andy Zeng, Pete Florence, Daniel Seita, Jonathan Tompson, and Ayzaan Wahid. This is the reference repository for the paper:

Transporter Networks: Rearranging the Visual World for Robotic Manipulation

Project Website  •  PDF  •  Conference on Robot Learning (CoRL) 2020

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong,
Ivan Krasin, Dan Duong, Vikas Sindhwani, Johnny Lee

Abstract. Robotic manipulation can be formulated as inducing a sequence of spatial displacements: where the space being moved can encompass an object, part of an object, or end effector. In this work, we propose the Transporter Network, a simple model architecture that rearranges deep features to infer spatial displacements from visual input—which can parameterize robot actions. It makes no assumptions of objectness (e.g. canonical poses, models, or keypoints), it exploits spatial symmetries, and is orders of magnitude more sample efficient than our benchmarked alternatives in learning vision-based manipulation tasks: from stacking a pyramid of blocks, to assembling kits with unseen objects; from manipulating deformable ropes, to pushing piles of small objects with closed-loop feedback. Our method can represent complex multi-modal policy distributions and generalizes to multi-step sequential tasks, as well as 6DoF pick-and-place. Experiments on 10 simulated tasks show that it learns faster and generalizes better than a variety of end-to-end baselines, including policies that use ground-truth object poses. We validate our methods with hardware in the real world.

Installation

Step 1. Recommended: install Miniconda with Python 3.7.

curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -u
echo $'\nexport PATH=~/miniconda3/bin:"${PATH}"\n' >> ~/.profile  # Add Conda to PATH.
source ~/.profile
conda init

Step 2. Create and activate Conda environment, then install GCC and Python packages.

cd ~/ravens
conda create --name ravens python=3.7 -y
conda activate ravens
sudo apt-get update
sudo apt-get -y install gcc libgl1-mesa-dev
pip install -r requirements.txt
python setup.py install --user

Step 3. Recommended: install GPU acceleration with NVIDIA CUDA 10.1 and cuDNN 7.6.5 for Tensorflow.

./oss_scipts/install_cuda.sh  #  For Ubuntu 16.04 and 18.04.
conda install cudatoolkit==10.1.243 -y
conda install cudnn==7.6.5 -y

Alternative: Pure pip

As an example for Ubuntu 18.04:

./oss_scipts/install_cuda.sh  #  For Ubuntu 16.04 and 18.04.
sudo apt install gcc libgl1-mesa-dev python3.8-venv
python3.8 -m venv ./venv
source ./venv/bin/activate
pip install -U pip
pip install scikit-build
pip install -r ./requirements.txt
export PYTHONPATH=${PWD}

Getting Started

Step 1. Generate training and testing data (saved locally). Note: remove --disp for headless mode.

python ravens/demos.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --mode=train --n=10
python ravens/demos.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --mode=test --n=100

To run with shared memory, open a separate terminal window and run python3 -m pybullet_utils.runServer. Then add --shared_memory flag to the command above.

Step 2. Train a model e.g., Transporter Networks model. Model checkpoints are saved to the checkpoints directory. Optional: you may exit training prematurely after 1000 iterations to skip to the next step.

python ravens/train.py --task=block-insertion --agent=transporter --n_demos=10

Step 3. Evaluate a Transporter Networks agent using the model trained for 1000 iterations. Results are saved locally into .pkl files.

python ravens/test.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --agent=transporter --n_demos=10 --n_steps=1000

Step 4. Plot and print results.

python ravens/plot.py --disp=True --task=block-insertion --agent=transporter --n_demos=10

Optional. Track training and validation losses with Tensorboard.

python -m tensorboard.main --logdir=logs  # Open the browser to where it tells you to.

Datasets and Pre-Trained Models

Download our generated train and test datasets and pre-trained models.

wget https://storage.googleapis.com/ravens-assets/checkpoints.zip
wget https://storage.googleapis.com/ravens-assets/block-insertion.zip
wget https://storage.googleapis.com/ravens-assets/place-red-in-green.zip
wget https://storage.googleapis.com/ravens-assets/towers-of-hanoi.zip
wget https://storage.googleapis.com/ravens-assets/align-box-corner.zip
wget https://storage.googleapis.com/ravens-assets/stack-block-pyramid.zip
wget https://storage.googleapis.com/ravens-assets/palletizing-boxes.zip
wget https://storage.googleapis.com/ravens-assets/assembling-kits.zip
wget https://storage.googleapis.com/ravens-assets/packing-boxes.zip
wget https://storage.googleapis.com/ravens-assets/manipulating-rope.zip
wget https://storage.googleapis.com/ravens-assets/sweeping-piles.zip

The MDP formulation for each task uses transitions with the following structure:

Observations: raw RGB-D images and camera parameters (pose and intrinsics).

Actions: a primitive function (to be called by the robot) and parameters.

Rewards: total sum of rewards for a successful episode should be =1.

Info: 6D poses, sizes, and colors of objects.

Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022