Google Landmark Recogntion and Retrieval 2021 Solutions

Overview

Google Landmark Recogntion and Retrieval 2021 Solutions

In this repository you can find solution and code for Google Landmark Recognition 2021 and Google Landmark Retrieval 2021 competitions (both in top-100).

Brief Summary

My solution is based on the latest modeling from the previous competition and strong post-processing based on re-ranking and using side models like detectors. I used single RTX 3080, EfficientNet B0 and only competition data for training.

Model and loss function

I used the same model and loss as the winner team of the previous competition as a base. Since I had only single RTX 3080, I hadn't enough time to experiment with that and change it. The only things I managed to test is Subcenter ArcMarginProduct as the last block of model and ArcFaceLossAdaptiveMargin loss function, which has been used by the 2nd place team in the previous year. Both those things gave me a signifact score boost (around 4% on CV and 5% on LB).

Setting up the training and validation

Optimizing and scheduling

Optimizer - Ranger (lr=0.003)
Scheduler - CosineAnnealingLR (T_max=12) + 1 epoch Warm-Up

Training stages

I found the best perfomance in training for 15 epochs and 5 stages:

  1. (1-3) - Resize to image size, Horizontal Flip
  2. (4-6) - Resize to bigger image size, Random Crop to image size, Horizontal Flip
  3. (7-9) - Resize to bigger image size, Random Crop to image size, Horizontal Flip, Coarse Dropout with one big square (CutMix)
  4. (10-12) - Resize to bigger image size, Random Crop to image size, Horizontal Flip, FMix, CutMix, MixUp
  5. (13-15) - Resize to bigger image size, Random Crop to image size, Horizontal Flip

I used default Normalization on all the epochs.

Validation scheme

Since I hadn't enough hardware, this became my first competition where I wasn't able to use a K-fold validation, but at least I saw stable CV and CV/LB correlation at the previous competitions, so I used simple stratified train-test split in 0.8, 0.2 ratio. I also oversampled all the samples up to 5 for each class.

Inference and Post-Processing:

  1. Change class to non-landmark if it was predicted more than 20 times .
  2. Using pretrained YoloV5 for detecting non-landmark images. All classes are used, boxes with confidence < 0.5 are dropped. If total area of boxes is greater than total_image_area / 2.7, the sample is marked as non-landmark. I tried to use YoloV5 for cleaning the train dataset as well, but it only decreased a score.
  3. Tuned post-processing from this paper, based on the cosine similarity between train and test images to non-landmark ones.
  4. Higher image size for extracting embeddings on inference.
  5. Also using public train dataset as an external data for extracting embeddings.

Didn't work for me

  • Knowledge Distillation
  • Resnet architectures (on average they were worse than effnets)
  • Adding an external non-landmark class to training from 2019 test dataset
  • Train binary non-landmark classifier

Transfer Learning on the full dataset and Label Smoothing should be useful here, but I didn't have time to test it.

Owner
Vadim Timakin
17 y.o Machine Learning Engineer | Kaggle Competitions Expert | ML/DL/CV | PyTorch
Vadim Timakin
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022