COD-Rank-Localize-and-Segment (CVPR2021)

Overview

COD-Rank-Localize-and-Segment (CVPR2021)

Simultaneously Localize, Segment and Rank the Camouflaged Objects alt text alt text

Full camouflage fixation training dataset is available!

The full camouflage fixation training dataset is available with the full fixation maps for the COD10K training dataset, which can be downloaded from: https://drive.google.com/file/d/1inb5iNTDswFPDm4SpzBbVgZdI4puAv_3/view?usp=sharing

Camouflage Localization and Ranking dataset

We labeled the COD10K training dataset with eye tracker to localize the camouflaged objects, and generate 2000 images with localization and ranking label (We are generating fixation and label for all the existing training and testing dataset, and will release the dataset very soon.). The training dataset is as:

https://drive.google.com/file/d/12kSU6QrPAiumWpSkMqi5nPMo1awBW0_N/view?usp=sharing

which include 2000 images, with the corresponding fixation label, ranking label and instance level labels.

The testing dataset is as:

https://drive.google.com/file/d/1Gz5GzL9eeW13aZjlzaisrJFGO-HmhLxS/view?usp=sharing

which include 280 images with fixation, ranking and instance level labels.

Our Results

We train our triple-task learning framework with the above 2000 image training dataset and show the results in Table 1 of the main paper. The resulted camouflage maps are as:

https://drive.google.com/file/d/1ahu77JP-hzjgup20fNIftCB_cHanE323/view?usp=sharing

We also train our camouflaged object detection task along with the original COD10K training dataset, and show the performance in Table 4. The resulted camouflage maps are as:

https://drive.google.com/file/d/10sr2lX38FEgSXL3k27gidlaPKo5VQyjv/view?usp=sharing

Note that, we re-train our models, and the resulted performance is slightly difference from our reported numbers.

Benchmark results:

  1. Please download the benchmark results (camoudlage maps) for your convienience. All the benchmark methods are trained with the COD10K training dataset (of size 4040):

https://drive.google.com/drive/folders/1sdly_TFW2WVqSm-hzuVXYKnu3DxkF-0F?usp=sharing

  1. Or the computed evaluation metrics:

https://drive.google.com/file/d/17SyikbvnNF6g0_2BteyplQLid2o0KZTc/view?usp=sharing

New dataset: NC4K

Please download our newly collected camouflaged object detection testing dataset, namely NC4K, in the link below (with image, ground truth map, and instance level annotation): https://drive.google.com/file/d/1kzpX_U3gbgO9MuwZIWTuRVpiB7V6yrAQ/view?usp=sharing

or please download it from BaiduNetDisk: 链接:https://pan.baidu.com/s/1bG4F2KJ_4UJG_7XG6ZNBHA 密码:d581

Our Bib:

Please cite our paper if necessary:

@inproceedings{yunqiu_cod21,
  title={Simultaneously Localize, Segment and Rank the Camouflaged Objects},
  author={Lyu, Yunqiu and Zhang, Jing and Dai, Yuchao and Li, Aixuan and Liu, Bowen and Barnes, Nick and Fan, Deng-Ping},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Contact

Please drop me an email for further problems or discussion: [email protected]

Owner
JingZhang
PhD Candidate
JingZhang
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023