Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Overview

README

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

The datasets used in our experiments:

Data format:

 {
       "tokens": ["2004-12-20T15:37:00", "Microscopic", "microcap", "Everlast", ",", "mainly", "a", "maker", "of", "boxing", "equipment", ",", "has", "soared", "over", "the", "last", "several", "days", "thanks", "to", "a", "licensing", "deal", "with", "Jacques", "Moret", "allowing", "Moret", "to", "buy", "out", "their", "women", "'s", "apparel", "license", "for", "$", "30", "million", ",", "on", "top", "of", "a", "$", "12.5", "million", "payment", "now", "."], 
       "pos": ["JJ", "JJ", "NN", "NNP", ",", "RB", "DT", "NN", "IN", "NN", "NN", ",", "VBZ", "VBN", "IN", "DT", "JJ", "JJ", "NNS", "NNS", "TO", "DT", "NN", "NN", "IN", "NNP", "NNP", "VBG", "NNP", "TO", "VB", "RP", "PRP$", "NNS", "POS", "NN", "NN", "IN", "$", "CD", "CD", ",", "IN", "NN", "IN", "DT", "$", "CD", "CD", "NN", "RB", "."], 
       "entities": [{"type": "ORG", "start": 1, "end": 4}, {"type": "ORG", "start": 5, "end": 11}, {"type": "ORG", "start": 25, "end": 27}, {"type": "ORG", "start": 28, "end": 29}, {"type": "ORG", "start": 32, "end": 33}, {"type": "PER", "start": 33, "end": 34}], 
       "ltokens": ["Everlast", "'s", "Rally", "Just", "Might", "Live", "up", "to", "the", "Name", "."], 
       "rtokens": ["In", "other", "words", ",", "a", "competitor", "has", "decided", "that", "one", "segment", "of", "the", "company", "'s", "business", "is", "potentially", "worth", "$", "42.5", "million", "."],
       "org_id": "MARKETVIEW_20041220.1537"
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license of LDC, we cannot directly release our preprocessed datasets of ACE04, ACE05 and KBP17. We only release the preprocessed GENIA dataset and the corresponding word vectors and dictionary. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the LDC license.

Pretrained Wordvecs

The word vectors used in our experiments:

Download and extract the wordvecs from above links, save GloVe in ../glove and BioWord2Vec in ../biovec.

mkdir ../glove
mkdir ../biovec
mv glove.6B.100d.txt ../glove
mv PubMed-shuffle-win-30.txt ../biovec

Note: the BioWord2Vec downloaded from the above link is word2vec binary format, and needs to be converted to GloVe format. Refer to this.

Example

Train

python identifier.py train --config configs/example.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints, or train your own model and then evaluate the model.

cd data/
# download checkpoints from https://drive.google.com/drive/folders/1NaoL42N-g1t9jiif427HZ6B8MjbyGTaZ?usp=sharing
unzip checkpoints.zip
cd ../
python identifier.py eval --config configs/eval.conf

If you use the checkpoints we provided, you will get the following results:

  • ACE05:
-- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 WEA        84.62        88.00        86.27           50
                 ORG        83.23        78.78        80.94          523
                 PER        88.02        92.05        89.99         1724
                 FAC        80.65        73.53        76.92          136
                 GPE        85.13        87.65        86.37          405
                 VEH        86.36        75.25        80.42          101
                 LOC        66.04        66.04        66.04           53

               micro        86.05        87.20        86.62         2992
               macro        82.01        80.19        81.00         2992
  • GENIA:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 RNA        89.91        89.91        89.91          109
                 DNA        76.79        79.16        77.96         1262
           cell_line        82.35        72.36        77.03          445
             protein        81.11        85.18        83.09         3084
           cell_type        72.90        75.91        74.37          606

               micro        79.46        81.84        80.63         5506
               macro        80.61        80.50        80.47         5506
  • ACE04:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 FAC        72.16        62.50        66.99          112
                 PER        91.62        91.26        91.44         1498
                 LOC        74.36        82.86        78.38          105
                 VEH        94.44       100.00        97.14           17
                 GPE        89.45        86.09        87.74          719
                 WEA        79.17        59.38        67.86           32
                 ORG        83.49        82.43        82.95          552

               micro        88.24        86.79        87.51         3035
               macro        83.53        80.64        81.78         3035
  • KBP17:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 LOC        66.75        64.41        65.56          399
                 FAC        72.62        64.06        68.08          679
                 PER        87.86        88.30        88.08         7083
                 ORG        80.06        72.29        75.98         2461
                 GPE        89.58        87.36        88.46         1978

               micro        85.31        82.96        84.12        12600
               macro        79.38        75.28        77.23        12600

Quick Start

The preprocessed GENIA dataset is available, so we use it as an example to demonstrate the training and evaluation of the model.

cd identifier

mkdir -p data/datasets
cd data/datasets
# download genia.zip (the preprocessed GENIA dataset, wordvec and vocabulary) from https://drive.google.com/file/d/13Lf_pQ1-QNI94EHlvtcFhUcQeQeUDq8l/view?usp=sharing.
unzip genia.zip
python identifier.py train --config configs/example.conf

output:

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
             protein        81.19        85.08        83.09         3084
                 RNA        90.74        89.91        90.32          109
           cell_line        82.35        72.36        77.03          445
                 DNA        76.83        79.08        77.94         1262
           cell_type        72.90        75.91        74.37          606

               micro        79.53        81.77        80.63         5506
               macro        80.80        80.47        80.55         5506

Best F1 score: 80.63560463237275, achieved at Epoch: 34
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Saved in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
vim configs/eval.conf
# change model_path to the path of the trained model.
# eg: model_path = data/genia/main/genia_train/2021-01-02_05:32:27.317850/final_model
python identifier.py eval --config configs/eval.conf

output:

--------------------------------------------------
Config:
data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model
Namespace(bert_before_lstm=True, cache_path=None, char_lstm_drop=0.2, char_lstm_layers=1, char_size=50, config='configs/eval.conf', cpu=False, dataset_path='data/datasets/genia/genia_test_context.json', debug=False, device_id='0', eval_batch_size=4, example_count=None, freeze_transformer=False, label='2021-01-02_eval', log_path='data/genia/main/', lowercase=False, lstm_drop=0.2, lstm_layers=1, model_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', model_type='identifier', neg_entity_count=5, nms=0.65, no_filter='sigmoid', no_overlapping=False, no_regressor=False, no_times_count=False, norm='sigmoid', pool_type='max', pos_size=25, prop_drop=0.5, reduce_dim=True, sampling_processes=4, seed=47, size_embedding=25, spn_filter=5, store_examples=True, store_predictions=True, tokenizer_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', types_path='data/datasets/genia/genia_types.json', use_char_lstm=True, use_entity_ctx=True, use_glove=True, use_pos=True, use_size_embedding=False, weight_decay=0.01, window_size=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], wordvec_path='../biovec/PubMed-shuffle-win-30.txt')
Repeat 1 times
--------------------------------------------------
Iteration 0
--------------------------------------------------
Avaliable devices:  [3]
Using Random Seed 47
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Dataset: data/datasets/genia/genia_test_context.json
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Model: identifier
Reused vocab!
Parse dataset 'test': 100%|███████████████████████████████████████| 1854/1854 [00:09<00:00, 202.86it/s]
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Relation type count: 1
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entity type count: 6
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entities:
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  No Entity=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  DNA=1
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  RNA=2
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_type=3
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  protein=4
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_line=5
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relations:
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  No Relation=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Dataset: test
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Document count: 1854
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relation count: 0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Entity count: 5506
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Context size: 242
2021-05-22 17:53:10,348 [MainThread  ] [INFO ]  Evaluate: test
Evaluate epoch 0: 100%|██████████████████████████████████████████| 464/464 [01:14<00:00,  6.26it/s]
Enmuberated Spans: 0
Evaluation

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
           cell_line        82.60        71.46        76.63          445
                 DNA        77.67        78.29        77.98         1262
                 RNA        92.45        89.91        91.16          109
           cell_type        73.79        75.25        74.51          606
             protein        81.99        84.57        83.26         3084

               micro        80.33        81.15        80.74         5506
               macro        81.70        79.89        80.71         5506
2021-05-22 17:54:28,943 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_eval/2021-05-22_17:52:43.991876

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen2021locateandlabel,
    author = {Shen, Yongliang and Ma, Xinyin and Tan, Zeqi and Zhang, Shuai and Wang, Wen and Lu, Weiming},
    title = {Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition},
    url = {https://arxiv.org/abs/2105.06804},
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics",
    year = {2021},
}
Owner
tricktreat
Knowledge is power.
tricktreat
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022