Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Overview

Deep-rPPG: Camera-based pulse estimation using deep learning tools

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools Source code of the master thesis titled "Camera-based pulse estimation using deep learning tools"

Implemented networks

DeepPhys

Chen, Weixuan, and Daniel McDuff. "Deepphys: Video-based physiological measurement using convolutional attention networks." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

PhysNet

Yu, Zitong, Xiaobai Li, and Guoying Zhao. "Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks." Proc. BMVC. 2019.

NVIDIA Jetson Nano inference

The running speed of the networks are tested on NVIDIA Jetson Nano. Results and the installation steps of PyTorch and OpenCV are in the nano folder.

Abstract of the corresponding master thesis

titled "Camera-based pulse estimation using deep learning tools" (also uploaded in this repository)

Lately, it has been shown that an average color camera can detect the subtle color variations of the skin (caused by the cardiac cycle) – enabling us to monitor the pulse remotely in a non-contact manner with a camera. Since then, the field of remote photoplethysmography (rPPG) has been formed and advanced quickly in order the overcome its main limitations, namely: motion robustness and low signal quality. Most recently, deep learning (DL) methods have also appeared in the field – but applied only to adults so far. In this work, we utilize DL approaches for long-term, continuous premature infant monitoring in the Neonatal Intensive Care Unit (NICU).

The technology used in NICU for monitoring vital signs of infants has hardly changed in the past 30 years (i.e., ECG and pulse-oximetry). Even though these technologies have been of great importance for the reliable measurement of essential vital signs (like heart-rate, respiration-rate, and blood oxygenation), they also have considerable disadvantages – originating from their contact nature. The skin of premature infants is fragile, and contact sensors may cause discomfort, stress, pain, and even injuries – thus can harm the early development of the neonate. For the well-being of not exclusively newborns, but also every patient or subject who requires long-term monitoring (e.g., elders) or for whom contact sensors are not applicable (e.g., burn patients), it would be beneficial to replace contact-based technologies with non-contact alternatives without significantly sacrificing accuracy. Therefore, the topic of this study is camera-based (remote) pulse monitoring -- utilizing DL methods -- in the specific use-case of infant monitoring in the NICU.

First of all, as there is no publicly available infant database for rPPG purposes currently to our knowledge, it had to be collected for Deep Neural Network (DNN) training and evaluation. Video data from infants were collected in the $I$st Dept. of Neonatology of Pediatrics, Dept. of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary and a database was created for DNN training and evaluation with a total length of around 1 day.

Two state-of-the-art DNNs were implemented (and trained on our data) which were developed specifically for the task of pulse extraction from video, namely DeepPhys and PhysNet. Besides, two classical algorithms were implemented, namely POS and FVP, to be able to compare the two approaches: in our dataset DL methods outperform classical ones. A novel data augmentation technique is introduced for rPPG DNN training, namely frequency augmentation, which is essentially a temporal resampling of a video and corresponding label segment (while keeping the original camera sampling rate parameter unchanged) resulting in a modified pulse-rate. This method significantly improved the generalization capability of the DNNs.

In case of some external condition, the efficacy of remote sensing the vital signs are degraded (e.g., inadequate illumination, heavy subject motion, limited visible skin surface, etc.). In these situations, the prediction of the methods might be inaccurate or might give a completely wrong estimate blindly without warning -- which is undesirable, especially in medical applications. To solve this problem, the technique of Stochastic Neural Networks (SNNs) is proposed which yields a probability distribution over the whole output space instead of a single point estimate. In other words, SNNs associate a certainty/confidence/quality measure to their prediction, therefore we know how reliable an estimate is. In the spirit of this, a probabilistic neural network was designed for pulse-rate estimation, called RateProbEst, fused and trained together with PhysNet. This method has not been applied in this field before to our knowledge. Each method was evaluated and compared with each other on a large benchmark dataset.

Finally, the feasibility of rPPG DNN applications in a resource-limited environment is inspected on an NVIDIA Jetson Nano embedded system. The results demonstrate that the implemented DNNs are capable of (quasi) real-time inference even on limited hardware.

Cite as

Dániel Terbe. (2021, January 25). Camera-Based Pulse Monitoring Using Deep Learning Tools.

Special application on neonates

A custom YOLO network is used to crop the baby as a preprocessing step. This network was created based on this repo: https://github.com/eriklindernoren/PyTorch-YOLOv3

Our modified version: https://github.com/terbed/PyTorch-YOLOv3

Owner
Terbe Dániel
Terbe Dániel
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022