[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

Related tags

Deep LearningArSSR
Overview

ArSSR

This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation" [ArXiv].

pipline

Figure 1: Oveview of the ArSSR model.

Abstract

High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales. All the NIFTI data about Figure 2 can be downloaded in LR image, 2x SR result, 3.2x SR result, 4x SR result.

example

Figure 2: An example of the SISR tasks of three different isotropic up-sampling scales k={2, 3.2, 4} for a 3D brain MR image by the single ArSSR model.


1. Running Environment

  • python 3.7.9
  • pytorch-gpu 1.8.1
  • tensorboard 2.6.0
  • SimpleITK, tqdm, numpy, scipy, skimage

2. Pre-trained Models

In the pre_trained_models folder, we provide the three pre-trained ArSSR models (with three difference encoder networks) on HCP-1200 dataset. You can improve the resolution of your images thourgh the following commands:

python test.py -input_path [input_path] \
               -output_path [output_path] \
               -encoder_name [RDN, ResCNN, or SRResNet] \
               -pre_trained_model [pre_trained_model]
               -scale [scale] \
               -is_gpu [is_gpu] \
               -gpu [gpu]

where,

  • input_path is the path of LR input image, it should be not contain the input finename.

  • output_path is the path of outputs, it should be not contain the output finename.

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.

  • pre_trained_model is the full-path of pre-trained ArSSR model (e.g, for ArSSR model with RDB encoder network: ./pre_trained_models/ArSSR_RDN.pkl).

  • !!! Note that here encoder_name and pre_trained_model have to be matched. E.g., if you use the ArSSR model with ResCNN encoder network, encoder_name should be ResCNN and pre_trained_model should be ./pre_trained_models/ArSSR_ResCNN.pkl

  • scale is up-sampling scale k, it can be int or float.

  • is_gpu is the identification of whether to use GPU (0->CPU, 1->GPU).

  • gpu is the numer of GPU.

3. Training from Scratch

3.1. Data

In our experiment, we train the ArSSR model on the HCP-1200 Dataset. In particular, the HCP-1200 dataset is split into three parts: 780 training set, 111 validation set, and 222 testing set. More details about the HCP-1200 can be found in our manuscript [ArXiv]. And you can download the pre-processed training set and validation set [Google Drive].

3.2. Training

By using the pre-processed trainning set and validationset by ourselves from [Google Drive], the pipline of training the ArSSR model can be divided into three steps:

  1. unzip the downloaed file data.zip.
  2. put the data in ArSSR directory.
  3. run the following command.
python train.py -encoder_name [encoder_name] \
                -decoder_depth [decoder_depth]	\
                -decoder_width [decoder_width] \
                -feature_dim [feature_dim] \
                -hr_data_train [hr_data_train] \
                -hr_data_val [hr_data_val] \
                -lr [lr] \
                -lr_decay_epoch [lr_decay_epoch] \
                -epoch [epoch] \
                -summary_epoch [summary_epoch] \
                -bs [bs] \
                -ss [ss] \
                -gpu [gpu]

where,

  • encoder_name is the type of the encoder network, including RDN, ResCNN, or SRResNet.
  • decoder_depth is the depth of the decoder network (default=8).
  • decoder_width is the width of the decoder network (default=256).
  • feature_dim is the dimension size of the feature vector (default=128)
  • hr_data_train is the file path of HR patches for training (if you use our pre-processd data, this item can be ignored).
  • hr_data_val is the file path of HR patches for validation (if you use our pre-processd data, this item can be ignored).
  • lr is the initial learning rate (default=1e-4).
  • lr_decay_epoch is learning rate multiply by 0.5 per some epochs (default=200).
  • epoch is the total number of epochs for training (default=2500).
  • summary_epoch is the current model will be saved per some epochs (default=200).
  • bs is the number of LR-HR patch pairs, i.e., N in Equ. 3 (default=15).
  • ss is the number of sampled voxel coordinates, i.e., K in Equ. 3 (default=8000).
  • gpu is the number of GPU.

4. Citation

If you find our work useful in your research, please cite:

@misc{wu2021arbitrary,
      title={An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation}, 
      author={Qing Wu and Yuwei Li and Yawen Sun and Yan Zhou and Hongjiang Wei and Jingyi Yu and Yuyao Zhang},
      year={2021},
      eprint={2110.14476},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}
Owner
Qing Wu
Qing Wu
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022