tf2-keras implement yolov5

Overview

YOLOv5 in tesnorflow2.x-keras

模型测试

  • 训练 COCO2017(val 5k)

  • 检测效果

  • 精度/召回率

Requirements

pip3 install -r requirements.txt

Get start

  1. 训练
python3 train.py
  1. tensorboard
tensorboard --host 0.0.0.0 --logdir ./logs/ --port 8053 --samples_per_plugin=images=40
  1. 查看
http://127.0.0.1:8053
  1. 测试, 修改detect.py里面input_imagemodel_path
python3 detect.py

训练自己的数据

  1. labelme打标自己的数据
  2. 打开data/labelme2coco.py脚本, 修改如下地方
input_dir = '这里写labelme打标时保存json标记文件的目录'
output_dir = '这里写要转CoCo格式的目录,建议建一个空目录'
labels = "这里是你打标时所有的类别名, txt文本即可, 每行一个类, 类名无需加引号"
  1. 执行data/labelme2coco.py脚本会在output_dir生成对应的json文件和图片
  2. 修改train.py文件中coco_annotation_file以及num_class, 注意classes通过CoCoDataGenrator(*).coco.cats[label_id]['name']可获得,由于coco中类别不连续,所以通过coco.cats拿到的数组下标拿到的类别可能不准.
  3. 开始训练, python3 train.py
Comments
  • 关于类别损失计算的问题

    关于类别损失计算的问题

    您好,loss这段不是很理解, https://github.com/yyccR/yolov5_in_tf2_keras/blob/3e6645cbf94d2a1e11c33663e80113daa4590321/loss.py#L142-L152 请问targets最后两位应该是置信度1和最佳的anchor索引吗? https://github.com/yyccR/yolov5_in_tf2_keras/blob/3e6645cbf94d2a1e11c33663e80113daa4590321/loss.py#L288-L293 那这边split出来的true_obj, true_cls应该就是对应的置信度1和最佳的anchor索引吧。 那这个类别损失 https://github.com/yyccR/yolov5_in_tf2_keras/blob/3e6645cbf94d2a1e11c33663e80113daa4590321/loss.py#L356 计算的不是最佳anchor索引吗,是跟obj_mask 有关系吗

    opened by whalefa1I 5
  • sparse_categorical_crossentropy训练时有nan结果

    sparse_categorical_crossentropy训练时有nan结果

    有的数据会在这行出现nan https://github.com/yyccR/yolov5_in_tf2_keras/blob/033a1156c1481f4258bf24a4a8215af39682da94/loss.py#L357 查看了input的is_nan,都正常。而且把sparse_categorical_crossentropy换成binary_crossentropy就好了。 请问这两者在这里计算有差别吗,是否可以进行替换

    opened by whalefa1I 3
  • lebelme2coco处理逻辑有误

    lebelme2coco处理逻辑有误

    我在实际使用您的代码训练自己的数据集时发现,labelme2coco.py 好像缺少对shape_type == "rectangle"时的处理,导致我最后生成的json文件annotations项为空。 以下是labelme2coco.py文件100行到124行代码: ` if shape_type == "polygon": mask = labelme.utils.shape_to_mask( img.shape[:2], points, shape_type ) # cv2.imshow("",np.array(mask, dtype=np.uint8)*255) # cv2.waitKey(0)

                if group_id is None:
                    group_id = uuid.uuid1()
    
                instance = (label, group_id)
                # print(instance)
    
                if instance in masks:
                    masks[instance] = masks[instance] | mask
                else:
                    masks[instance] = mask
                # print(masks[instance].shape)
    
                if shape_type == "rectangle":
                    (x1, y1), (x2, y2) = points
                    x1, x2 = sorted([x1, x2])
                    y1, y2 = sorted([y1, y2])
                    points = [x1, y1, x2, y1, x2, y2, x1, y2]
                if shape_type == "circle": 
                ....
    

    ` 代码永远不会执行到shape_type == "rectangle"或shape_type == "circle"。

    opened by aijialin 2
  • layers.py

    layers.py

    根據ultralytics/yolov5:

    https://github.com/ultralytics/yolov5/blob/63ddb6f0d06f6309aa42bababd08c859197a27af/models/common.py#L70-L73

    這一段程式:

    https://github.com/yyccR/yolov5_in_tf2_keras/blob/46298d7c98073750176d64896ee9dc01b55c5aca/layers.py#L127-L132

    是不是應該改寫成:

        def call(self, inputs, *args, **kwargs):
            y = self.multiheadAttention(self.q(inputs), self.v(inputs), self.k(inputs)) + inputs
            x = self.fc1(x)
            x = self.fc2(x)
            x = x +  y
            return x
    
    opened by AugustusHsu 1
  • What is the mAP on COCO17 val ?

    What is the mAP on COCO17 val ?

    Hi @yyccR, thanks for your repo. I want to know if you can reach the same mAP as in original YOLOV5 (Train on COCO17 train and test on COCO17 val)? And do you have plan to release some pretrained checkpoint ?

    opened by Tyler-D 1
Releases(v1.1)
  • v1.1(Jun 24, 2022)

    v1.1 几个总结:

    • [1]. 调整tf.keras.layers.BatchNormalization的__call__方法中training=True
    • [2]. 新增TFLite/onnx格式导出与验证,详见/data/h5_to_tflite.py, /data/h5_to_onnx.py
    • [3]. 修改backbone网络里batch_size,在训练和测试时需指定,避免tflite导出时FlexOps问题
    • [4]. YoloHead里对类别不再做softmax,直接sigmoid,支持多类别输出
    • [5]. release里的yolov5s-best.h5为kaggle猫狗脸数据集的重新训练权重,训练:测试为8:2,val精度大概如下:

    | class | [email protected] | [email protected]:0.95 | precision | recall | | :-: | :-: | :-: | :-: | :-: | | cat | 0.962680 | 0.672483 | 0.721003 | 0.958333 | | dog | 0.934285 | 0.546893 | 0.770701 | 0.923664 | | total | 0.948482 | 0.609688 | 0.745852 | 0.940999 |

    • [6]. release里的yolov5s-best.tflite为上述yolov5s-best.h5的tflite量化模型,建议用Netron软件打开查看输入输出
    • [7]. release里的yolov5s-best.onnx为上述yolov5s-best.h5的onnx模型,建议用Netron软件打开查看输入输出
    • [8]. android 模型测试效果如下:

    就这样,继续加油!💪🏻💪🏻💪🏻

    Source code(tar.gz)
    Source code(zip)
    yolov5s-best.h5(27.51 MB)
    yolov5s-best.onnx(27.25 MB)
    yolov5s-best.tflite(6.95 MB)
  • v1.0(Jun 21, 2022)

    v1.0 几个总结:

    • [1]. 模型结构总的与 ultralytics/yolov5 v6.0 保持一致
    • [2]. 其中Conv层替换swishRelu
    • [3]. 整体数据增强与 ultralytics/yolov5 保持一致
    • [4]. readme中训练所需的数据集为kaggle公开猫狗脸检测数据集,已放到release列表中
    • [5]. 为什么不训练coco数据集?因为没资源,跑一个coco要很久的,服务器一直都有任务在跑所以没空去跑 - . -
    • [6]. release里的yolov5s-best.h5为上述kaggle猫狗脸数据集的训练权重,训练:测试为8:2,val精度大概如下:

    | class | [email protected] | [email protected]:0.95 | precision | recall | | :-: | :-: | :-: | :-: | :-: | | cat | 0.905156 | 0.584378 | 0.682848 | 0.886555 | | dog | 0.940633 | 0.513005 | 0.724036 | 0.934866 | | total | 0.922895 | 0.548692 | 0.703442 | 0.910710 |

    就这样,继续加油!💪🏻💪🏻💪🏻

    Source code(tar.gz)
    Source code(zip)
    JPEGImages.zip(260.17 MB)
    yolov5s-best.h5(27.51 MB)
Owner
yangcheng
yangcheng
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022