Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Overview

Transformer Quantization

This repository contains the implementation and experiments for the paper presented in

Yelysei Bondarenko1, Markus Nagel1, Tijmen Blankevoort1, "Understanding and Overcoming the Challenges of Efficient Transformer Quantization", EMNLP 2021. [ACL Anthology] [ArXiv]

1 Qualcomm AI Research (Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.)

Reference

If you find our work useful, please cite

@inproceedings{bondarenko-etal-2021-understanding,
    title = "Understanding and Overcoming the Challenges of Efficient Transformer Quantization",
    author = "Bondarenko, Yelysei  and
      Nagel, Markus  and
      Blankevoort, Tijmen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.627",
    pages = "7947--7969",
    abstract = "Transformer-based architectures have become the de-facto standard models for a wide range of Natural Language Processing tasks. However, their memory footprint and high latency are prohibitive for efficient deployment and inference on resource-limited devices. In this work, we explore quantization for transformers. We show that transformers have unique quantization challenges {--} namely, high dynamic activation ranges that are difficult to represent with a low bit fixed-point format. We establish that these activations contain structured outliers in the residual connections that encourage specific attention patterns, such as attending to the special separator token. To combat these challenges, we present three solutions based on post-training quantization and quantization-aware training, each with a different set of compromises for accuracy, model size, and ease of use. In particular, we introduce a novel quantization scheme {--} per-embedding-group quantization. We demonstrate the effectiveness of our methods on the GLUE benchmark using BERT, establishing state-of-the-art results for post-training quantization. Finally, we show that transformer weights and embeddings can be quantized to ultra-low bit-widths, leading to significant memory savings with a minimum accuracy loss. Our source code is available at \url{https://github.com/qualcomm-ai-research/transformer-quantization}.",
}

How to install

First, ensure locale variables are set as follows:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

Second, make sure to have Python ≥3.6 (tested with Python 3.6.8) and ensure the latest version of pip (tested with 21.2.4):

pip install --upgrade --no-deps pip

Next, install PyTorch 1.4.0 with the appropriate CUDA version (tested with CUDA 10.0, CuDNN 7.6.3):

pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

Finally, install the remaining dependencies using pip:

pip install -r requirements.txt

To run the code, the project root directory needs to be added to your pythonpath:

export PYTHONPATH="${PYTHONPATH}:/path/to/this/dir"

Running experiments

The main run file to reproduce all experiments is main.py. It contains 4 commands to train and validate FP32 and quantized model:

Usage: main.py [OPTIONS] COMMAND [ARGS]...

Options:
  --help  Show this message and exit.

Commands:
  train-baseline
  train-quantized
  validate-baseline
  validate-quantized

You can see the full list of options for each command using python main.py [COMMAND] --help.

A. FP32 fine-tuning

To start with, you need to get the fune-tuned model(s) for the GLUE task of interest. Example run command for fine-tuning:

python main.py train-baseline --cuda --save-model --model-name bert_base_uncased --task rte \
    --learning-rate 3e-05 --batch-size 8 --eval-batch-size 8 --num-epochs 3 --max-seq-length 128 \
    --seed 1000 --output-dir /path/to/output/dir/

You can also do it directly using HuggingFace library [examples]. In all experiments we used seeds 1000 - 1004 and reported the median score. The sample output directory looks as follows:

/path/to/output/dir
├── config.out
├── eval_results_rte.txt
├── final_score.txt
├── out
│   ├── config.json  # Huggingface model config
│   ├── pytorch_model.bin  # PyTorch model checkpoint
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json  # Huggingface tokenizer config
│   ├── training_args.bin
│   └── vocab.txt  # Vocabulary
└── tb_logs  # TensorBoard logs
    ├── 1632747625.1250594
    │   └── events.out.tfevents.*
    └── events.out.tfevents.*

For validation (both full-precision and quantized), it is assumed that these output directories with the fine-tuned checkpoints are aranged as follows (you can also use a subset of GLUE tasks):

/path/to/saved_models/
├── rte/rte_model_dir
│   ├── out
│   │   ├── config.json  # Huggingface model config
│   │   ├── pytorch_model.bin  # PyTorch model checkpoint
│   │   ├── tokenizer_config.json  # Huggingface tokenizer config
│   │   ├── vocab.txt  # Vocabulary
│   │   ├── (...)
├── cola/cola_model_dir
│   ├── out
│   │   ├── (...)
├── mnli/mnli_model_dir
│   ├── out
│   │   ├── (...)
├── mrpc/mrpc_model_dir
│   ├── out
│   │   ├── (...)
├── qnli/qnli_model_dir
│   ├── out
│   │   ├── (...)
├── qqp/qqp_model_dir
│   ├── out
│   │   ├── (...)
├── sst2/sst2_model_dir
│   ├── out
│   │   ├── (...)
└── stsb/stsb_model_dir
    ├── out
    │   ├── (...)

Note, that you have to create this file structure manually.

The model can then be validated as follows:

python main.py validate-baseline --eval-batch-size 32 --seed 1000 --model-name bert_base_uncased \
    --model-path /path/to/saved_models/ --task rte

You can also validate multiple or all checkpoints by specifying --task --task [...] or --task all, respectively.

B. Post-training quantization (PTQ)

1) Standard (naïve) W8A8 per-tensor PTQ / base run command for all PTQ experiments

python main.py validate-quantized --act-quant --weight-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --n-bits 8 --n-bits-act 8 --qmethod symmetric_uniform \
	--qmethod-act asymmetric_uniform --weight-quant-method MSE --weight-opt-method golden_section \
	--act-quant-method current_minmax --est-ranges-batch-size 1 --num-est-batches 1 \
	--quant-setup all

Note that the range estimation settings are slightly different for each task.

2) Mixed precision W8A{8,16} PTQ

Specify --quant-dict "{'y': 16, 'h': 16, 'x': 16}":

  • 'x': 16 will set FFN's input to 16-bit
  • 'h': 16 will set FFN's output to 16-bit
  • 'y': 16 will set FFN's residual sum to 16-bit

For STS-B regression task, you will need to specify --quant-dict "{'y': 16, 'h': 16, 'x': 16, 'P': 16, 'C': 16}" and --quant-setup MSE_logits, which will also quantize pooler and the final classifier to 16-bit and use MSE estimator for the output.

3) Per-embedding and per-embedding-group (PEG) activation quantization

  • --per-embd -- Per-embedding quantization for all activations
  • --per-groups [N_GROUPS] -- PEG quantization for all activations, no permutation
  • --per-groups [N_GROUPS] --per-groups-permute -- PEG quantization for all activations, apply range-based permutation (separate for each quantizer)
  • --quant-dict "{'y': 'ng6', 'h': 'ng6', 'x': 'ng6'}" -- PEG quantization using 6 groups for FFN's input, output and residual sum, no permutation
  • --quant-dict "{'y': 'ngp6', 'h': 'ngp6', 'x': 'ngp6'}" --per-groups-permute-shared-h -- PEG quantization using 6 groups for FFN's input, output and residual sum, apply range-based permutation (shared between tensors in the same layer)

4) W4A32 PTQ with AdaRound

python main.py validate-quantized --weight-quant --no-act-quant --no-pad-to-max-length \
	--est-ranges-no-pad --eval-batch-size 16 --seed 1000 --model-path /path/to/saved_models/ \
	--task rte --qmethod symmetric_uniform --qmethod-act asymmetric_uniform --n-bits 4 \
	--weight-quant-method MSE --weight-opt-method grid --num-candidates 100 --quant-setup all \
	--adaround all --adaround-num-samples 1024 --adaround-init range_estimator \
	--adaround-mode learned_hard_sigmoid --adaround-asym --adaround-iters 10000 \
	--adaround-act-quant no_act_quant

C. Quantization-aware training (QAT)

Base run command for QAT experiments (using W4A8 for example):

python main.py train-quantized --cuda --do-eval --logging-first-step --weight-quant --act-quant \
	--pad-to-max-length --learn-ranges --tqdm --batch-size 8 --seed 1000 \
	--model-name bert_base_uncased --learning-rate 5e-05 --num-epochs 6 --warmup-steps 186 \
	--weight-decay 0.0 --attn-dropout 0.0 --hidden-dropout 0.0 --max-seq-length 128 --n-bits 4 \
	--n-bits-act 8 --qmethod symmetric_uniform --qmethod-act asymmetric_uniform \
	--weight-quant-method MSE --weight-opt-method golden_section --act-quant-method current_minmax \
	--est-ranges-batch-size 16 --num-est-batches 1 --quant-setup all \
	--model-path /path/to/saved_models/rte/out --task rte --output-dir /path/to/qat_output/dir

Note that the settings are slightly different for each task (see Appendix).

To run mixed-precision QAT with 2-bit embeddings and 4-bit weights, add --quant-dict "{'Et': 2}".

Owner
An initiative of Qualcomm Technologies, Inc.
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022