End-To-End Crowdsourcing

Overview

End-To-End Crowdsourcing

Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment analysis. LTNet is adapted from "Facial Expression Recognition with Inconsistently Annotated Datasets" to text data. It encompasses a simple attention based neural network and utilizes confusion matrices as a noise reduction technique. For comparison, the traditional ground truth estimators "Fast-Dawid-Skene" and "MACE" are applied.

This codebase was used in both "End-to-End Annotator Bias Approximation on Crowdsourced Single-Label Sentiment Analysis" and "Deep End-to-End Learning for Noisy Annotations and Crowdsourcing in Natural Language Processing".

Training

This is an example training procedure for the TripAdvisor dataset. The dataset and solver objects are initialized before a standard LTNet model is trained for 300 epochs.

import torch
import pytz
import datetime

from datasets.tripadvisor import TripAdvisorDataset
from solver import Solver
from utils import *

# gpu
DEVICE = torch.device('cuda')

# cpu
# DEVICE = torch.device('cpu')

label_dim = 2
annotator_dim = 2
loss = 'nll'
one_dataset_one_annotator = False
dataset = TripAdvisorDataset(device=DEVICE, one_dataset_one_annotator=one_dataset_one_annotator)

lr = 1e-5
batch_size = 64
current_time = datetime.datetime.now(pytz.timezone('Europe/Berlin')).strftime("%Y%m%d-%H%M%S")
hyperparams = {'batch': batch_size, 'lr': lr}
writer = get_writer(path=f'../logs/test',
                    current_time=current_time, params=hyperparams)

solver = Solver(dataset, lr, batch_size, 
                writer=writer,
                device=DEVICE,
                label_dim=label_dim,
                annotator_dim=annotator_dim)

model, f1 = solver.fit(epochs=300, return_f1=True,
                       deep_randomization=True)

These initialization and training steps of a network are abstracted away into src/training. Scripts with many more details on training procedures and different configurations can be found in src/scripts. All are best loaded into an ipython terminal with the %load command.

Databases

How to use them from outside the src folder?

It makes us able to refer to the classes properly.

import sys
sys.path.append("src/")

Pass the root folders of the embeddings and the data.

from datasets.emotion import EmotionDataset

dataset = EmotionDataset(
        text_processor='word2vec', 
        text_processor_filters=['lowercase', 'stopwordsfilter'],
        embedding_path='data/embeddings/word2vec/glove.6B.50d.txt',
        data_path='data/'
        )

Datasets are available at "TripAdvisor", "Emotion" and "Organic".

TripAdvisor Dataset

code

from datasets.tripadvisor import TripAdvisorDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
print(f'1st train datapoint: {dataset[0]}')

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'f', 'rating': 4, 'text': 'I realise ...', 'embedding': array}

Emotion Dataset

Every headline has been annotated on each emotion. One can select one emotion as the label by the set_emotion method.

code

from datasets.emotion import EmotionDataset

dataset = TripAdvisorDataset(text_processor='word2vec', text_processor_filters=['lowercase', 'stopwordsfilter'])

print(f'Dataset is in {dataset.mode} mode')
print(f'Train-Validation split is {dataset.train_val_split}')
dataset.set_emotion('anger')
print(f'1st train datapoint: {dataset[0]}') # select anger_label as label
dataset.set_emotion('disgust')
print(f'1st train datapoint: {dataset[0]}') # select disgust_label as label

output

Dataset is in train mode
Train-Validation split is 0.8
1st train datapoint: {'label': 0, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
1st train datapoint: {'label': 1, 'annotator':'xxx1', 'anger_response':0, 'anger_label':0, 'anger_gold'=1, 'disgust_response':0 ... 'text': 'I realise ...', ... 'embedding': array}
Owner
Andreas Koch
Robotics Graduate @ TU Munich
Andreas Koch
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022