Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Overview

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion

This repository contains a pytorch implementation of "Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion"

report

This codebase provides:

  • train code
  • test code
  • dataset
  • pretrained motion models

The main sections are:

  • Overview
  • Instalation
  • Download Data and Models
  • Training from Scratch
  • Testing with Pretrained Models

Please note, we will not be providing visualization code for the photorealistic rendering.

Overview:

We provide models and code to train and test our listener motion models.

See below for sections:

  • Installation: environment setup and installation for visualization
  • Download data and models: download annotations and pre-trained models
  • Training from scratch: scripts to get the training pipeline running from scratch
  • Testing with pretrianed models: scripts to test pretrained models and save output motion parameters

Installation:

Tested with cuda/9.0, cudnn/v7.0-cuda.9.0, and python 3.6.11

git clone [email protected]:evonneng/learning2listen.git

cd learning2listen/src/
conda create -n venv_l2l python=3.6
conda activate venv_l2l
pip install -r requirements.txt

export L2L_PATH=`pwd`

IMPORTANT: After installing torch, please make sure to modify the site-packages/torch/nn/modules/conv.py file by commenting out the self.padding_mode != 'zeros' line to allow for replicated padding for ConvTranspose1d as shown here.

Download Data and Models:

Download Data:

Please first download the dataset for the corresponding individual with google drive.

Make sure all downloaded .tar files are moved to the directory $L2L_PATH/data/ (e.g. $L2L_PATH/data/conan_data.tar)

Then run the following script.

./scripts/unpack_data.sh

The downloaded data will unpack into the following directory structure as viewed from $L2L_PATH:

|-- data/
    |-- conan/
        |-- test/
            |-- p0_list_faces_clean_deca.npy
            |-- p0_speak_audio_clean_deca.npy
            |-- p0_speak_faces_clean_deca.npy
            |-- p0_speak_files_clean_deca.npy
            |-- p1_list_faces_clean_deca.npy
            |-- p1_speak_audio_clean_deca.npy
            |-- p1_speak_faces_clean_deca.npy
            |-- p1_speak_files_clean_deca.npy
        |-- train/
    |-- devi2/
    |-- fallon/
    |-- kimmel/
    |-- stephen/
    |-- trevor/

Our dataset consists of 6 different youtube channels named accordingly. Please see comments in $L2L_PATH/scripts/download_models.sh for more details.

Data Format:

The data format is as described below:

We denote p0 as the person on the left side of the video, and p1 as the right side.

  • p0_list_faces_clean_deca.npy - face features (N x 64 x 184) for when p0 is listener
    • N sequences of length 64. Features of size 184, which includes the deca parameter set of expression (50D), pose (6D), and details (128D).
  • p0_speak_audio_clean_deca.npy - audio features (N x 256 x 128) for when p0 is speaking
    • N sequences of length 256. Features of size 128 mel features
  • p0_speak_faces_clean_deca.npy - face features (N x 64 x 184) for when p0 is speaking
  • p0_speak_files_clean_deca.npy - file names of the format (N x 64 x 3) for when p0 is speaking

Using Your Own Data:

To train and test on your own videos, please follow this process to convert your data into a compatible format:

(Optional) In our paper, we ran preprocessing to figure out when a each person is speaking or listening. We used this information to segment/chunk up our data. We then extracted speaker-only audio by removing listener back-channels.

  1. Run SyncNet on the video to determine who is speaking when.
  2. Then run Multi Sensory to obtain speaker's audio with all the listener backchannels removed.

For the main processing, we assuming there are 2 people in the video - one speaker and one listener...

  1. Run DECA to extract the facial expression and pose details of the two faces for each frame in the video. For each person combine the extracted features across the video into a (1 x T x (50+6)) matrix and save to p0_list_faces_clean_deca.npy or p0_speak_faces_clean_deca.npy files respectively. Note, in concatenating the features, expression comes first.

  2. Use librosa.feature.melspectrogram(...) to process the speaker's audio into a (1 x 4T x 128) feature. Save to p0_speak_audio_clean_deca.npy.

Download Model:

Please first download the models for the corresponding individual with google drive.

Make sure all downloaded .tar files are moved to the directory $L2L_PATH/models/ (e.g. $L2L_PATH/models/conan_models.tar)

Once downloaded, you can run the follow script to unpack all of the models.

cd $L2L_PATH
./scripts/unpack_models.sh

We provide person-specific models trained for Conan, Fallon, Stephen, and Trevor. Each person-specific model consists of 2 models: 1) VQ-VAE pre-trained codebook of motion in $L2L_PATH/vqgan/models/ and 2) predictor model for listener motion prediction in $L2L_PATH/models/. It is important that the models are paired correctly during test time.

In addition to the models, we also provide the corresponding config files that were used to define the models/listener training setup.

Please see comments in $L2L_PATH/scripts/unpack_models.sh for more details.

Training from Scratch:

Training a model from scratch follows a 2-step process.

  1. Train the VQ-VAE codebook of listener motion:
# --config: the config file associated with training the codebook
# Includes network setup information and listener information
# See provided config: configs/l2_32_smoothSS.json

cd $L2L_PATH/vqgan/
python train_vq_transformer.py --config <path_to_config_file>

Please note, during training of the codebook, it is normal for the loss to increase before decreasing. Typical training was ~2 days on 4 GPUs.

  1. After training of the VQ-VAE has converged, we can begin training the predictor model that uses this codebook.
# --config: the config file associated with training the predictor
# Includes network setup information and codebook information
# Note, you will have to update this config to point to the correct codebook.
# See provided config: configs/vq/delta_v6.json

cd $L2L_PATH
python -u train_vq_decoder.py --config <path_to_config_file>

Training the predictor model should have a much faster convergance. Typical training was ~half a day on 4 GPUs.

Testing with Pretrained Models:

# --config: the config file associated with training the predictor 
# --checkpoint: the path to the pretrained model
# --speaker: can specify which speaker you want to test on (conan, trevor, stephen, fallon, kimmel)

cd $L2L_PATH
python test_vq_decoder.py --config <path_to_config> --checkpoint <path_to_pretrained_model> --speaker <optional>

For our provided models and configs you can run:

python test_vq_decoder.py --config configs/vq/delta_v6.json --checkpoint models/delta_v6_er2er_best.pth --speaker 'conan'

Visualization

As part of responsible practices, we will not be releasing code for the photorealistic visualization pipeline. However, the raw 3D meshes can be rendered using the DECA renderer.

Potentially Coming Soon

  • Visualization of 3D meshes code from saved output
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022