Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Overview

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion

This repository contains a pytorch implementation of "Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion"

report

This codebase provides:

  • train code
  • test code
  • dataset
  • pretrained motion models

The main sections are:

  • Overview
  • Instalation
  • Download Data and Models
  • Training from Scratch
  • Testing with Pretrained Models

Please note, we will not be providing visualization code for the photorealistic rendering.

Overview:

We provide models and code to train and test our listener motion models.

See below for sections:

  • Installation: environment setup and installation for visualization
  • Download data and models: download annotations and pre-trained models
  • Training from scratch: scripts to get the training pipeline running from scratch
  • Testing with pretrianed models: scripts to test pretrained models and save output motion parameters

Installation:

Tested with cuda/9.0, cudnn/v7.0-cuda.9.0, and python 3.6.11

git clone [email protected]:evonneng/learning2listen.git

cd learning2listen/src/
conda create -n venv_l2l python=3.6
conda activate venv_l2l
pip install -r requirements.txt

export L2L_PATH=`pwd`

IMPORTANT: After installing torch, please make sure to modify the site-packages/torch/nn/modules/conv.py file by commenting out the self.padding_mode != 'zeros' line to allow for replicated padding for ConvTranspose1d as shown here.

Download Data and Models:

Download Data:

Please first download the dataset for the corresponding individual with google drive.

Make sure all downloaded .tar files are moved to the directory $L2L_PATH/data/ (e.g. $L2L_PATH/data/conan_data.tar)

Then run the following script.

./scripts/unpack_data.sh

The downloaded data will unpack into the following directory structure as viewed from $L2L_PATH:

|-- data/
    |-- conan/
        |-- test/
            |-- p0_list_faces_clean_deca.npy
            |-- p0_speak_audio_clean_deca.npy
            |-- p0_speak_faces_clean_deca.npy
            |-- p0_speak_files_clean_deca.npy
            |-- p1_list_faces_clean_deca.npy
            |-- p1_speak_audio_clean_deca.npy
            |-- p1_speak_faces_clean_deca.npy
            |-- p1_speak_files_clean_deca.npy
        |-- train/
    |-- devi2/
    |-- fallon/
    |-- kimmel/
    |-- stephen/
    |-- trevor/

Our dataset consists of 6 different youtube channels named accordingly. Please see comments in $L2L_PATH/scripts/download_models.sh for more details.

Data Format:

The data format is as described below:

We denote p0 as the person on the left side of the video, and p1 as the right side.

  • p0_list_faces_clean_deca.npy - face features (N x 64 x 184) for when p0 is listener
    • N sequences of length 64. Features of size 184, which includes the deca parameter set of expression (50D), pose (6D), and details (128D).
  • p0_speak_audio_clean_deca.npy - audio features (N x 256 x 128) for when p0 is speaking
    • N sequences of length 256. Features of size 128 mel features
  • p0_speak_faces_clean_deca.npy - face features (N x 64 x 184) for when p0 is speaking
  • p0_speak_files_clean_deca.npy - file names of the format (N x 64 x 3) for when p0 is speaking

Using Your Own Data:

To train and test on your own videos, please follow this process to convert your data into a compatible format:

(Optional) In our paper, we ran preprocessing to figure out when a each person is speaking or listening. We used this information to segment/chunk up our data. We then extracted speaker-only audio by removing listener back-channels.

  1. Run SyncNet on the video to determine who is speaking when.
  2. Then run Multi Sensory to obtain speaker's audio with all the listener backchannels removed.

For the main processing, we assuming there are 2 people in the video - one speaker and one listener...

  1. Run DECA to extract the facial expression and pose details of the two faces for each frame in the video. For each person combine the extracted features across the video into a (1 x T x (50+6)) matrix and save to p0_list_faces_clean_deca.npy or p0_speak_faces_clean_deca.npy files respectively. Note, in concatenating the features, expression comes first.

  2. Use librosa.feature.melspectrogram(...) to process the speaker's audio into a (1 x 4T x 128) feature. Save to p0_speak_audio_clean_deca.npy.

Download Model:

Please first download the models for the corresponding individual with google drive.

Make sure all downloaded .tar files are moved to the directory $L2L_PATH/models/ (e.g. $L2L_PATH/models/conan_models.tar)

Once downloaded, you can run the follow script to unpack all of the models.

cd $L2L_PATH
./scripts/unpack_models.sh

We provide person-specific models trained for Conan, Fallon, Stephen, and Trevor. Each person-specific model consists of 2 models: 1) VQ-VAE pre-trained codebook of motion in $L2L_PATH/vqgan/models/ and 2) predictor model for listener motion prediction in $L2L_PATH/models/. It is important that the models are paired correctly during test time.

In addition to the models, we also provide the corresponding config files that were used to define the models/listener training setup.

Please see comments in $L2L_PATH/scripts/unpack_models.sh for more details.

Training from Scratch:

Training a model from scratch follows a 2-step process.

  1. Train the VQ-VAE codebook of listener motion:
# --config: the config file associated with training the codebook
# Includes network setup information and listener information
# See provided config: configs/l2_32_smoothSS.json

cd $L2L_PATH/vqgan/
python train_vq_transformer.py --config <path_to_config_file>

Please note, during training of the codebook, it is normal for the loss to increase before decreasing. Typical training was ~2 days on 4 GPUs.

  1. After training of the VQ-VAE has converged, we can begin training the predictor model that uses this codebook.
# --config: the config file associated with training the predictor
# Includes network setup information and codebook information
# Note, you will have to update this config to point to the correct codebook.
# See provided config: configs/vq/delta_v6.json

cd $L2L_PATH
python -u train_vq_decoder.py --config <path_to_config_file>

Training the predictor model should have a much faster convergance. Typical training was ~half a day on 4 GPUs.

Testing with Pretrained Models:

# --config: the config file associated with training the predictor 
# --checkpoint: the path to the pretrained model
# --speaker: can specify which speaker you want to test on (conan, trevor, stephen, fallon, kimmel)

cd $L2L_PATH
python test_vq_decoder.py --config <path_to_config> --checkpoint <path_to_pretrained_model> --speaker <optional>

For our provided models and configs you can run:

python test_vq_decoder.py --config configs/vq/delta_v6.json --checkpoint models/delta_v6_er2er_best.pth --speaker 'conan'

Visualization

As part of responsible practices, we will not be releasing code for the photorealistic visualization pipeline. However, the raw 3D meshes can be rendered using the DECA renderer.

Potentially Coming Soon

  • Visualization of 3D meshes code from saved output
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022