Provide a market analysis (R)

Overview

market-study

Provide a market analysis (R) - FRENCH

Produisez une étude de marché

Prérequis

Pour effectuer ce projet, vous devrez maîtriser la manipulation de données en Python ou R, appliquer ces langages à la statistique descriptive ainsi qu'à la classification automatique.

Scénario

Votre entreprise d'agroalimentaire souhaite se développer à l'international. Elle est spécialisée dans...

... le poulet !

L'international, oui, mais pour l'instant, le champ des possibles est bien large : aucun pays particulier ni aucun continent n'est pour le moment choisi. Tous les pays sont envisageables !

Votre objectif sera d'aider à cibler plus particulièrement certains pays, dans le but d'approfondir ensuite l'étude de marché. Plus particulièrement, l'idéal serait de produire des "groupes" de pays, plus ou moins gros, dont on connaît les caractéristiques.

Dans un premier temps, la stratégie est plutôt d'exporter les produits plutôt que de produire sur place, c'est-à-dire dans le(s) nouveau(x) pays ciblé(s).

Les données

Vous vous souvenez de la FAO, dans l'un de vos précédents projets ? Allez, on y retourne ! Vous connaissez déjà l'interface du site, à vous de retrouver les données qui vous seront utiles pour le projet.

Votre mission

Pour identifier les pays propices à une insertion dans le marché du poulet, il vous a été demandé de cibler les pays. Il vous faudra également étudier les régimes alimentaires de chaque pays, notamment en termes de protéines d'origine animale et en termes de calories.

Construisez votre échantillon contenant l'ensemble des pays disponibles, chacun caractérisé par ces variables :

différence de population entre une année antérieure (au choix) et l'année courante, exprimée en pourcentage ; proportion de protéines d'origine animale par rapport à la quantité totale de protéines dans la disponibilité alimentaire du pays ; disponibilité alimentaire en protéines par habitant ; disponibilité alimentaire en calories par habitant. Construisez un dendrogramme contenant l'ensemble des pays étudiés, puis coupez-le afin d'obtenir 5 groupes.

Caractérisez chacun de ces groupes selon les variables cités précédemment, et facultativement selon d'autres variables que vous jugerez pertinentes (ex : le PIB par habitant). Vous pouvez le faire en calculant la position des centroïdes de chacun des groupes, puis en les commentant et en les critiquant au vu de vos objectifs.

Donnez une courte liste de pays à cibler, en présentant leurs caractéristiques. Un découpage plus précis qu'en 5 groupes peut si besoin être effectué pour cibler un nombre raisonnable de pays.

Visualisez vos partitions dans le premier plan factoriel obtenu par ACP.

Dans votre partition, vous avez obtenu des groupes distincts. Vérifiez donc qu'ils diffèrent réellement. Pour cela, réalisez les tests statistiques suivants :

un test d'adéquation : parmi les 4 variables, ou parmi d'autres variables que vous trouverez pertinentes, trouvez une variable dont la loi est normale ; un test de comparaison de deux populations (dans le cas gaussien) : choisissez 2 clusters parmi ceux que vous aurez déterminé. Sur ces 2 clusters, testez la variable gaussienne grâce à un test de comparaison.

small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021