Provide a market analysis (R)

Overview

market-study

Provide a market analysis (R) - FRENCH

Produisez une étude de marché

Prérequis

Pour effectuer ce projet, vous devrez maîtriser la manipulation de données en Python ou R, appliquer ces langages à la statistique descriptive ainsi qu'à la classification automatique.

Scénario

Votre entreprise d'agroalimentaire souhaite se développer à l'international. Elle est spécialisée dans...

... le poulet !

L'international, oui, mais pour l'instant, le champ des possibles est bien large : aucun pays particulier ni aucun continent n'est pour le moment choisi. Tous les pays sont envisageables !

Votre objectif sera d'aider à cibler plus particulièrement certains pays, dans le but d'approfondir ensuite l'étude de marché. Plus particulièrement, l'idéal serait de produire des "groupes" de pays, plus ou moins gros, dont on connaît les caractéristiques.

Dans un premier temps, la stratégie est plutôt d'exporter les produits plutôt que de produire sur place, c'est-à-dire dans le(s) nouveau(x) pays ciblé(s).

Les données

Vous vous souvenez de la FAO, dans l'un de vos précédents projets ? Allez, on y retourne ! Vous connaissez déjà l'interface du site, à vous de retrouver les données qui vous seront utiles pour le projet.

Votre mission

Pour identifier les pays propices à une insertion dans le marché du poulet, il vous a été demandé de cibler les pays. Il vous faudra également étudier les régimes alimentaires de chaque pays, notamment en termes de protéines d'origine animale et en termes de calories.

Construisez votre échantillon contenant l'ensemble des pays disponibles, chacun caractérisé par ces variables :

différence de population entre une année antérieure (au choix) et l'année courante, exprimée en pourcentage ; proportion de protéines d'origine animale par rapport à la quantité totale de protéines dans la disponibilité alimentaire du pays ; disponibilité alimentaire en protéines par habitant ; disponibilité alimentaire en calories par habitant. Construisez un dendrogramme contenant l'ensemble des pays étudiés, puis coupez-le afin d'obtenir 5 groupes.

Caractérisez chacun de ces groupes selon les variables cités précédemment, et facultativement selon d'autres variables que vous jugerez pertinentes (ex : le PIB par habitant). Vous pouvez le faire en calculant la position des centroïdes de chacun des groupes, puis en les commentant et en les critiquant au vu de vos objectifs.

Donnez une courte liste de pays à cibler, en présentant leurs caractéristiques. Un découpage plus précis qu'en 5 groupes peut si besoin être effectué pour cibler un nombre raisonnable de pays.

Visualisez vos partitions dans le premier plan factoriel obtenu par ACP.

Dans votre partition, vous avez obtenu des groupes distincts. Vérifiez donc qu'ils diffèrent réellement. Pour cela, réalisez les tests statistiques suivants :

un test d'adéquation : parmi les 4 variables, ou parmi d'autres variables que vous trouverez pertinentes, trouvez une variable dont la loi est normale ; un test de comparaison de deux populations (dans le cas gaussien) : choisissez 2 clusters parmi ceux que vous aurez déterminé. Sur ces 2 clusters, testez la variable gaussienne grâce à un test de comparaison.

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
Falcon: Interactive Visual Analysis for Big Data

Falcon: Interactive Visual Analysis for Big Data Crossfilter millions of records without latencies. This project is work in progress and not documente

Vega 803 Dec 27, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

opendrift OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere. Do

OpenDrift 167 Dec 13, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022