LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Overview

Package Description

The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide a data-driven solution. Based on an observation dataset including 3091 spectra from 361 individual SNe Ia, we trained LSTM neural networks to learn from the spectroscopic time-series data of type Ia supernovae. The model enables the construction of spectral sequences from spectroscopic observations with very limited time coverage.

This repository is associated to the paper "Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review)".

Installation

One can install any desired version of snlstm from Github https://github.com/thomasvrussell/snlstm:

python setup.py install

Additional dependencies

  • R : In order to reduce the data dimension, we use Functional Principal Component Analysis (FPCA) to parameterize supernova spectra before feeding them into neural networks. The FPCA parameterization and FPCA reconstruction are achieved by the fpca package in R programming language. One can install them, e.g., on CentOS

    $ yum install R
    R > install.packages("fpca")
    
  • TensorFlow : tensorflow is required to load a given LSTM model and make the spectral predictions. The default LSTM model in this repository is trained on an enviornment with tensorflow 1.14.0. To avoid potential incompatiability issues casued by different tensorflow versions, we recommend users to install the same version via Conda

    conda install -c anaconda tensorflow=1.14.0
    
  • PYPHOT (optional) : pyphot is a portable package to compute synthetic photometry of a spectrum with given filter. In our work, the tool was used to correct the continuum component of a supernova spectrum so that its synthetic photometry could be in line with the observed light curves. One may consider to install the package if such color calibration is necessary. We recommend users to install the latest version from Github (pyphot 1.1)

    pip install git+https://github.com/mfouesneau/pyphot
    

Download archival datasets

snlstm allows users to access to the following archival datasets

[1] A spectral-observation dataset : it is comprised of 3091 observed spectra from 361 SNe Ia, largely contributed from CfA (Blondin et al. 2012), BSNIP (Silverman et al. 2012), CSP (Folatelli et al. 2013) and Supernova Polarimetry Program (Wang & Wheeler 2008; Cikota et al. 2019a; Yang et al. 2020).
[2] A spectral-template dataset : it includes 361 spectral templates, each of them (covering -15 to +33d with wavelength from 3800 to 7200 A) was generated from the available spectroscopic observations of an individual SN via a LSTM neural network model.
[3] An auxiliary photometry dataset : it provides the B & V light curves of these SNe (in total, 196 available), that were used to calibrate the synthetic B-V color of the observed spectra.

These datasets are stored on Zenodo platform, one can download the related files (~ 2GB) through the Zenodo page: https://doi.org/10.5281/zenodo.5637790.

Quick start guide

We prepared several jupyter notebooks as quick tutorials to use our package in a friendly way.

[*] 1-Access_to_Archival_ObservationData.ipynb : this notebook is to show how to access to the spectral-observation dataset and the auxiliary photometry dataset.
[†] 2-Access_to_Archival_TemplateData.ipynb : one can obtain the LSTM generated spectral time sequences in the spectral-template dataset following this notebook.
[‡] 3-SpecData_Process_Example.ipynb : the notebook demonstrates the pre-processing of the spectroscopic data described in our paper, including smooth, rebinning, lines removal and color calibration, etc.
[§] 4-LSTM_Predictions_on_New_SN.ipynb : the notebook provides a guide for users who want apply our LSTM model on very limited spectroscopic data of newly discovered SNe Ia. In this notebook, we use SN 2016coj, a well-observed SN Ia from the latest BSNIP data release, as an example.
[¶] 5-LSTM_Estimate_Spectral_Phase.ipynb : our neural network is trained based on the spectral data with known phases, however, it is still possible to apply the model to the spectra without any prior phase knownlege. The idea is wrong given phase of input spectrum will degrade the predictive accuracy of our method, that is to say, we can find the best-fit phase of input spectrum by minimizing the accuacy of prediction for itself. This notebook is to show how to estimate spectral phase via our model. For the case of SN 2016coj in the notebook, the estimation errors are around 0.5 - 2.0d.

Publications use our method

  • SN2018agk: A prototypical Type Ia Supernova with a smooth power-law rise in Kepler (K2) (Qinan Wang, et al., 2021, ApJ, see Figure 5 & 6).

Todo list

  • Support spectral sequence with arbitrary timesteps as input. (current model only accepts spectral pair inputs.)
  • Support more flexible wavelength range for input spectra. (current model is trained on spectra with uniform wavelength range from 3800 to 7200 A.)

Common issues

TBD

Development

The latest source code can be obtained from https://github.com/thomasvrussell/snlstm.

When submitting bug reports or questions via the issue tracker, please include the following information:

  • OS platform.
  • Python version.
  • Tensorflow version.
  • Version of snlstm.

Cite

Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review).

You might also like...
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Deep learning based hand gesture recognition using LSTM and MediaPipie.
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

A3C LSTM  Atari with Pytorch plus A3G design
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Releases(v1.1.2)
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022