Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

Related tags

Deep LearningCoTuning
Overview

CoTuning

Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning.

[News] 2021/01/13 The COCO 70 dataset used in the paper is available for download!

COCO 70 dataset

COCO 70 dataset is a large-scale classification dataset (1000 images per class) created from COCO. It is used to explore the effect of fine-tuning with a large amount of data. Check our paper if you are interested in how it was created. Please respect the original license of COCO when you use it.

To download COCO 70, follow these steps:

  1. download separate files here (the file is too large to upload, so I have to split it into chunks)

  2. merge separate files into a single file by cat COCO70_splita* > COCO70.tar

  3. extract the dataset from the file by tar -xf COCO70.tar

The directory architecture looks like the following:

├── classes.txt #per class name per name

├── dev

├── dev.txt # [filename, class_index] per line, 0 <= class_index <= 69

├── test

├── test.txt

├── train

└── train.txt

There are 100 images per class for validation (dev.txt) and test (test.txt) respectively, and 800 images per class for training (train.txt).

Dependencies

  • python3
  • torch == 1.1.0 (with suitable CUDA and CuDNN version)
  • torchvision == 0.3.0
  • scikit-learn
  • numpy
  • argparse
  • tqdm

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/

Quick Start

python --gpu [gpu_num] --data_path /path/to/dataset --class_num [class_num] --trade_off 2.3 train.py 

Citation

If you use our code or use the constructed COCO-70 dataset, please consider citing:

@article{you2020co,
  title={Co-Tuning for Transfer Learning},
  author={You, Kaichao and Kou, Zhi and Long, Mingsheng and Wang, Jianmin},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact

If you have any problem about our code, feel free to contact [email protected] or [email protected].

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022