Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

Overview

RE results graph visualization and company clustering

Installation

  1. pip install -r requirements.txt

  2. python -m nltk.downloader stopwords

  3. python3.7 main.py

1. Paragraph-Level Relation Extraction using rule-based and SSAN

|- df4rule.py

  • Prerequiste

    • You need csv files that are generated with finiancial_news_api
    • Those files should be located in "visualization_code/rule_base_datasets/*.csv"
  • This code extracts relations with rule-based patterns.

    • (S + V + O) -> (head: S, relation: V, tail: O )

|- df4ssan.py

  • Prerequiste
    • We recommend you run SSAN independently, and make sure all relation extraction.json file from SSAN code saved in "output/*/SSAN_result_all_relation.json"
  • This code convert json file to dataframe and concat all the dataframes from various companies.

โ€‹

2. Graph visualization by degree and betweeness centrality using networkx

|- visualize_cent.py

  • output
    • degree_centrality: "./graph_png/degree.png"
    • betweenness_centrality: "./graph_png/between.png"

3. Get embedding vector with Node2vec Company clustering with K-means and GMM

|- node.py

|-similarity.py

  • output
    • consine similarity: "./similarity_result/consine_similarity.csv"
    • l2 norm: "./similarity_result/l2_norm.csv"

|- company_cluster.py

  • GMM (soft clustering) k: number of clusters

    main.py company_clustering(com_list, com_vec, 4, 'gmm')

  • K-means (hard clustering)

    main.py company_clustering(com_list, com_vec, 4, 'kmeans')

โ€‹

4. Visualize with PCA and TSNE

|-cluster_visualize.py

  • output
    • PCA: "./graph_png/company_cluster_pca.png"
    • TSNE: "./graph_png/company_cluster_tsne.png"

Output

  • degree_centrality: "./graph_png/degree.png"
  • betweenness_centrality: "./graph_png/between.png"
  • consine similarity: "./similarity_result/consine_similarity.csv"
  • l2 norm: "./similarity_result/l2_norm.csv"
  • PCA: "./graph_png/company_cluster_pca.png"
  • TSNE: "./graph_png/company_cluster_tsne.png"
Owner
Jieun Han
Jieun Han
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition โš ๏ธ ๐Ÿšฆ Fundamentals of Intelligent Systems Introduction ๐Ÿ“„ Development of a neural network capable of recognizing nine differ

Sebastiรกn Fernรกndez Garcรญa 2 Dec 19, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

ไฝ•ๆฃฎ 50 Sep 20, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
โšก๏ธOptimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ•šโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ•šโ•โ•โ–ˆโ–ˆโ•”โ•โ•โ• โ•šโ–ˆโ–ˆ

Daniel Bolya 4.6k Dec 30, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
An updated version of virtual model making

Model-Swap-Face v2 โ€ƒโ€ƒ่ฟ™ไธช้กน็›ฎๆ˜ฏๅŸบไบŽstylegan2 pSpๅˆถไฝœ็š„๏ผŒๆฏ”v1็‰ˆๆœฌModel-Swap-FaceๅœจๆŽจ็†้€Ÿๅบฆๅ’Œๅ›พๅƒ่ดจ้‡ไธŠๆœ‰ไธ€ๅฎšๆๅ‡ใ€‚ไธป่ฆ็š„ๅŠŸ่ƒฝๆ˜ฏๅฐ†่™šๆ‹Ÿๆจก็‰น่ฟ›่กŒ็Žฏ็ƒไธๅŒๅŒบๅŸŸ็š„้ฃŽๆ ผ่ฝฌๆข๏ผŒ็›ฎๅ‰่ฝฌๆขๅ™จๆไพ›่ฅฟๆฌงๆจก็‰นใ€ไธœไบšๆจก็‰นๅ’ŒๅŒ—้žๆจก็‰นไธ‰็งไธปๆต็š„้ฃŽๆ ผๆ ทๅผ๏ผŒๅฏๅธฎๆˆ‘ไปฌๅฎž็Žฐ็”Ÿไบง่ต„ๆ–™้›ถๆˆ

seeprettyface.com 62 Dec 09, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022