Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

Overview

LapDepth-release

PWC PWC

This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals"

Minsoo Song, Seokjae Lim, and Wonjun Kim*
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

Video presentation

Screenshot

Requirements

  • Python >= 3.7
  • Pytorch >= 1.6.0
  • Ubuntu 16.04
  • CUDA 9.2
  • cuDNN (if CUDA available)

some other packages: geffnet, path, IPython, blessings, progressbar

Pretrained models

You can download pre-trained model

  • Trained with KITTI

    • batch 16, SyncBatchNorm, data loss
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-80m 0.965 0.995 0.999 0.059 0.201 2.397 0.090
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-50m 0.970 0.996 0.999 0.057 0.155 1.788 0.085
  • Trained with KITTI

    • batch 16, GroupNorm, data loss + gradient loss
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-80m 0.961 0.994 0.999 0.059 0.209 2.489 0.091
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-50m 0.968 0.996 0.999 0.057 0.155 1.807 0.085
  • Trained with NYU Depth V2

    • batch 16, SyncBatchNorm, data loss
    cap a1 a2 a3 Abs Rel log10 RMSE RMSE log
    0-10m 0.895 0.983 0.996 0.105 0.045 0.384 0.135

Demo images (Single Test Image Prediction)

Make sure you download the pre-trained model and placed it in the './pretrained/' directory before running the demo.
Demo Command Line:

############### Example of argument usage #####################
## Running demo using a specified image (jpg or png)
python demo.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --img_dir ./your/file/path/filename --pretrained KITTI --cuda --gpu_num 0
python demo.py --model_dir ./pretrained/LDRN_NYU_ResNext101_pretrained_data.pkl --img_dir ./your/file/path/filename --pretrained NYU --cuda --gpu_num 0
# output image name => 'out_' + filename

## Running demo using a whole folder of images
python demo.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --img_folder_dir ./your/folder/path/folder_name --pretrained KITTI --cuda --gpu_num 0
# output folder name => 'out_' + folder_name

If you are using a model pre-trained from KITTI, insert '--pretrained KITTI' command
(in the case of NYU, '--pretrained NYU').
If you run the demo on GPU, insert '--cuda'.
'--gpu_num' argument is an index list of your available GPUs you want to use (e.g., 0,1,2,3).
ex) If you want to activate only the 3rd gpu out of 4 gpus, insert '--gpu_num 2'

Dataset Preparation

We referred to BTS in the data preparation process.

KITTI

1. Official ground truth

  • Download official KITTI ground truth on the link and make KITTI dataset directory.
    $ cd ./datasets
    $ mkdir KITTI && cd KITTI
    $ mv ~/Downloads/data_depth_annotated.zip ./datasets/KITTI
    $ unzip data_depth_annotated.zip

2. Raw dataset

  • Construct raw KITTI dataset using following commands.
    $ mv ./datasets/kitti_archives_to_download.txt ./datasets/KITTI
    $ cd ./datasets/KITTI
    $ aria2c -x 16 -i ./kitti_archives_to_download.txt
    $ parallel unzip ::: *.zip

3. Dense g.t dataset
We take an inpainting method from DenseDepth to get dense g.t for gradient loss.
(You can train our model using only data loss without gradient loss, then you don't need dense g.t)
Corresponding inpainted results from './datasets/KITTI/data_depth_annotated/2011_xx_xx_drive_xxxx_sync/proj_depth/groundtruth/image_02' are should be saved in './datasets/KITTI/data_depth_annotated/2011_xx_xx_drive_xxxx_sync/dense_gt/image_02'.
KITTI data structures are should be organized as below:

|-- datasets
  |-- KITTI
     |-- data_depth_annotated  
        |-- 2011_xx_xx_drive_xxxx_sync
           |-- proj_depth  
              |-- groundtruth            # official G.T folder
        |-- ... (all drives of all days in the raw KITTI)  
     |-- 2011_09_26                      # raw RGB data folder  
        |-- 2011_09_26_drive_xxxx_sync
     |-- 2011_09_29
     |-- ... (all days in the raw KITTI)  

NYU Depth V2

1. Training set
Make NYU dataset directory

    $ cd ./datasets
    $ mkdir NYU_Depth_V2 && cd NYU_Depth_V2
  • Constructing training data using following steps :
    • Download Raw NYU Depth V2 dataset (450GB) from this Link.
    • Extract the raw dataset into './datasets/NYU_Depth_V2'
      (It should make './datasets/NYU_Depth_V2/raw/....').
    • Run './datasets/sync_project_frames_multi_threads.m' to get synchronized data. (need Matlab)
      (It shoud make './datasets/NYU_Depth_V2/sync/....').
  • Or, you can directly download whole 'sync' folder from our Google drive Link into './datasets/NYU_Depth_V2/'

2. Testing set
Download official nyu_depth_v2_labeled.mat and extract image files from the mat file.

    $ cd ./datasets
    ## Download official labled NYU_Depth_V2 mat file
    $ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
    ## Extract image files from the mat file
    $ python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./NYU_Depth_V2/official_splits/

Evaluation

Make sure you download the pre-trained model and placed it in the './pretrained/' directory before running the evaluation code.

  • Evaluation Command Line:
# Running evaluation using a pre-trained models
## KITTI
python eval.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --evaluate --batch_size 1 --dataset KITTI --data_path ./datasets/KITTI --gpu_num 0
## NYU Depth V2
python eval.py --model_dir ./pretrained/LDRN_NYU_ResNext101_pretrained_data.pkl --evaluate --batch_size 1 --dataset NYU --data_path --data_path ./datasets/NYU_Depth_V2/official_splits/test --gpu_num 0

### if you want to save image files from results, insert `--img_save` command
### if you have dense g.t files, insert `--img_save` with `--use_dense_depth` command

Training

LDRN (Laplacian Depth Residual Network) training

  • Training Command Line:
# KITTI 
python train.py --distributed --batch_size 16 --dataset KITTI --data_path ./datasets/KITTI --gpu_num 0,1,2,3
# NYU
python train.py --distributed --batch_size 16 --dataset NYU --data_path ./datasets/NYU_Depth_V2/sync --epochs 30 --gpu_num 0,1,2,3 
## if you want to train using gradient loss, insert `--use_dense_depth` command
## if you don't want distributed training, remove `--distributed` command

'--gpu_num' argument is an index list of your available GPUs you want to use (e.g., 0,1,2,3).
ex) If you want to activate only the 3rd gpu out of 4 gpus, insert '--gpu_num 2'

Reference

When using this code in your research, please cite the following paper:

M. Song, S. Lim and W. Kim, "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3049869.

@ARTICLE{9316778,
  author={M. {Song} and S. {Lim} and W. {Kim}},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2021.3049869}}
Owner
Minsoo Song
B.S. degree with the Department of Electrical and Electronics Engineering, Konkuk University (2014.03 ~)
Minsoo Song
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022