Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Overview

Contrast and Mix (CoMix)

The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing part of Advances in Neural Information Processing Systems (NeurIPS) 2021.

Aadarsh Sahoo1, Rutav Shah1, Rameswar Panda2, Kate Saenko2,3, Abir Das1

1 IIT Kharagpur, 2 MIT-IBM Watson AI Lab, 3 Boston University

[Paper] [Project Page]

 

Fig. Temporal Contrastive Learning with Background Mixing and Target Pseudo-labels. Temporal contrastive loss (left) contrasts a single temporally augmented positive (same video, different speed) per anchor against rest of the videos in a mini-batch as negatives. Incorporating background mixing (middle) provides additional positives per anchor possessing same action semantics with a different background alleviating background shift across domains. Incorporating target pseudo-labels (right) additionally enhances the discriminabilty by contrasting the target videos with the same pseudo-label as positives against rest of the videos as negatives.

 

Preparing the Environment

Conda

Please use the comix_environment.yml file to create the conda environment comix as:

conda env create -f comix_environment.yml

Pip

Please use the requirements.txt file to install all the required dependencies as:

pip install -r requirements.txt

Data Directory Structure

All the datasets should be stored in the folder ./data following the convention ./data/ and it must be passed as an argument to base_dir=./data/ .

UCF - HMDB

For ucf_hmdb dataset with base_dir=./data/ucf_hmdb the structure would be as follows:

.
├── ...
├── data
│   ├── ucf_hmdb
│   │   ├── ucf_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
│   │   ├── hmdb_videos
|   |   ├── ucf_BG
|   |   └── hmdb_BG
│   └──
└──

      
     
    
   
Jester

For Jester dataset with base_dir=./data/jester the structure would be as follows

.
├── ...
├── data
│   ├── jester
|   |   ├── jester_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
|   |   ├── jester_BG
|   |   |   ├── 
       
         | | | | ├── 
        
          | | | ├── ... └── └── └── 
        
       
      
     
    
   
Epic-Kitchens

For Epic Kitchens dataset with base_dir=./data/epic_kitchens the structure would be as follows (we follow the same structure as in the original dataset) :

.
├── ...
├── data
│   ├── epic_kitchens
|   |   ├── epic_kitchens_videos
|   |   |   ├── train
|   |   |   |   ├── D1
|   |   |   |   |   ├── 
   
    
|   |   |   |   |   |   ├── 
    
     
|   |   |   |   |   |   ├── 
     
      
|   |   |   |   |   |   ├── ...
|   |   |   |   |   ├── 
      
       
|   |   |   |   |   ├── ...
|   |   |   |   ├── D2
|   |   |   |   └── D3
|   |   |   └── test
└── └── └── epic_kitchens_BG

      
     
    
   

For using datasets stored in some other directories, please pass the parameter base_dir accordingly.

Background Extraction using Temporal Median Filtering

Please refer to the folder ./background_extraction for the codes to extract backgrounds using temporal median filtering.

Data

All the required split files are provided inside the directory ./video_splits.

The official download links for the datasets used for this paper are: [UCF-101] [HMDB-51] [Jester] [Epic Kitchens]

Training CoMix

Here are some of the sample and recomended commands to train CoMix for the transfer task of:

UCF -> HMDB from UCF-HMDB dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name UCF-HMDB --src_dataset UCF --tgt_dataset HMDB --batch_size 8 --model_root ./checkpoints_ucf_hmdb --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.01 --base_dir ./data/ucf_hmdb

S -> T from Jester dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Jester --src_dataset S --tgt_dataset T --batch_size 8 --model_root ./checkpoints_jester --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.1 --base_dir ./data/jester

D1 -> D2 from Epic-Kitchens dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Epic-Kitchens --src_dataset D1 --tgt_dataset D2 --batch_size 8 --model_root ./checkpoints_epic_d1_d2 --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.01 --lambda_tpl 0.01 --base_dir ./data/epic_kitchens

For detailed description regarding the arguments, use:

python main.py --help

Citing CoMix

If you use codes in this repository, consider citing CoMix. Thanks!

@article{sahoo2021contrast,
  title={Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing},
  author={Sahoo, Aadarsh and Shah, Rutav and Panda, Rameswar and Saenko, Kate and Das, Abir},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Computer Vision and Intelligence Research (CVIR)
The Computer Vision and Intelligence Research (CVIR) group is part of the Department of Computer Science and Engineering at IIT Kharagpur.
Computer Vision and Intelligence Research (CVIR)
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022