Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

Overview

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Pyramid Occupancy Network architecture

Data generation

In our work we report results on two large-scale autonomous driving datasets: NuScenes and Argoverse. The birds-eye-view ground truth labels we use to train and evaluate our networks are generated by combining map information provided by the two datasets with 3D bounding box annotations, which we rasterise to produce a set of one-hot binary labels. We also make use of LiDAR point clouds to infer regions of the birds-eye-view which are completely occluded by buildings or other objects.

NuScenes

To train our method on NuScenes you will first need to

  1. Download the NuScenes dataset which can be found at https://www.nuscenes.org/download. Only the metadata, keyframe and lidar blobs are necessary.
  2. Download the map expansion pack. Note that to replicate our original results you should use the original version of the expansion (v1.0). The later versions fixed some bugs with the original maps so we would expect even better performance!
  3. Install the NuScenes devkit from https://github.com/nutonomy/nuscenes-devkit
  4. Cd to mono-semantic-maps
  5. Edit the configs/datasets/nuscenes.yml file, setting the dataroot and label_root entries to the location of the NuScenes dataset and the desired ground truth folder respectively.
  6. Run our data generation script: python scripts/make_nuscenes_labels.py. Bewarned there's a lot of data so this will take a few hours to run!

Argoverse

To train on the Argoverse dataset:

  1. Download the Argoverse tracking data from https://www.argoverse.org/data.html#tracking-link. Our models were trained on version 1.1, you will need to download the four training blobs, validation blob, and the HD map data.
  2. Install the Argoverse devkit from https://github.com/argoai/argoverse-api
  3. Cd to mono-semantic-maps
  4. Edit the configs/datasets/argoverse.yml file, setting the dataroot and label_root entries to the location of the install Argoverse data and the desired ground truth folder respectively.
  5. Run our data generation script: python scripts/make_argoverse_labels.py. This script will also take a while to run!

Training

Once ground truth labels have been generated, you can train our method by running the train.py script in the root directory:

python train.py --dataset nuscenes --model pyramid

The --dataset flag allows you to specify the dataset to train on, either 'argoverse' or 'nuscenes'. The model flag allows training of the proposed method 'pyramid', or one of the baseline methods ('vpn' or 'ved'). Additional command line options can be specified by passing a list of key-value pairs to the --options flag. The full list of configurable options can be found in the configs/defaults.yml file.

Owner
Thomas Roddick
Thomas Roddick
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023