Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Overview

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Reference

  • Paper URL

  • Author: Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, Che Zheng

  • Google Research

Method

model

1. Dense Synthesizer

2. Fixed Random Synthesizer

3. Random Synthesizer

4. Factorized Dense Synthesizer

5. Factorized Random Synthesizer

6. Mixture of Synthesizers

Usage

import torch

from synthesizer import Transformer, SynthesizerDense, SynthesizerRandom, FactorizedSynthesizerDense, FactorizedSynthesizerRandom, MixtureSynthesizers, get_n_params, calculate_flops


def main():
    batch_size, channel_dim, sentence_length = 2, 1024, 32
    x = torch.randn([batch_size, sentence_length, channel_dim])

    vanilla = Transformer(channel_dim)
    out, attention_map = vanilla(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(vanilla), calculate_flops(vanilla.children())
    print('vanilla, n_params: {}, flops: {}'.format(n_params, flops))

    dense_synthesizer = SynthesizerDense(channel_dim, sentence_length)
    out, attention_map = dense_synthesizer(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(dense_synthesizer), calculate_flops(dense_synthesizer.children())
    print('dense_synthesizer, n_params: {}, flops: {}'.format(n_params, flops))

    random_synthesizer = SynthesizerRandom(channel_dim, sentence_length)
    out, attention_map = random_synthesizer(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(random_synthesizer), calculate_flops(random_synthesizer.children())
    print('random_synthesizer, n_params: {}, flops: {}'.format(n_params, flops))

    random_synthesizer_fix = SynthesizerRandom(channel_dim, sentence_length, fixed=True)
    out, attention_map = random_synthesizer_fix(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(random_synthesizer_fix), calculate_flops(random_synthesizer_fix.children())
    print('random_synthesizer_fix, n_params: {}, flops: {}'.format(n_params, flops))

    factorized_synthesizer_random = FactorizedSynthesizerRandom(channel_dim)
    out, attention_map = factorized_synthesizer_random(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(factorized_synthesizer_random), calculate_flops(
        factorized_synthesizer_random.children())
    print('factorized_synthesizer_random, n_params: {}, flops: {}'.format(n_params, flops))

    factorized_synthesizer_dense = FactorizedSynthesizerDense(channel_dim, sentence_length)
    out, attention_map = factorized_synthesizer_dense(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(factorized_synthesizer_dense), calculate_flops(
        factorized_synthesizer_dense.children())
    print('factorized_synthesizer_dense, n_params: {}, flops: {}'.format(n_params, flops))

    mixture_synthesizer = MixtureSynthesizers(channel_dim, sentence_length)
    out, attention_map = mixture_synthesizer(x)
    print(out.size(), attention_map.size())
    n_params, flops = get_n_params(mixture_synthesizer), calculate_flops(mixture_synthesizer.children())
    print('mixture_synthesizer, n_params: {}, flops: {}'.format(n_params, flops))


if __name__ == '__main__':
    main()

Output

torch.Size([2, 32, 1024]) torch.Size([2, 32, 32])
vanilla, n_params: 3148800, flops: 3145729
torch.Size([2, 32, 1024]) torch.Size([2, 32, 32])
dense_synthesizer, n_params: 1083456, flops: 1082370
torch.Size([2, 32, 1024]) torch.Size([1, 32, 32])
random_synthesizer, n_params: 1050624, flops: 1048577
torch.Size([2, 32, 1024]) torch.Size([1, 32, 32])
random_synthesizer_fix, n_params: 1050624, flops: 1048577
torch.Size([2, 32, 1024]) torch.Size([2, 32, 32])
factorized_synthesizer_random, n_params: 1066000, flops: 1064961
torch.Size([2, 32, 1024]) torch.Size([2, 32, 32])
factorized_synthesizer_dense, n_params: 1061900, flops: 1060865
torch.Size([2, 32, 1024]) torch.Size([2, 32, 32])
mixture_synthesizer, n_params: 3149824, flops: 3145729

Paper Performance

eval

Owner
Myeongjun Kim
Computer Vision Research using Deep Learning
Myeongjun Kim
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023