PyTorch implementation of the wavelet analysis from Torrence & Compo

Overview

Continuous Wavelet Transforms in PyTorch

This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The code builds upon the excellent implementation of Aaron O'Leary by adding a PyTorch filter bank wrapper to enable fast convolution on the GPU. Specifically, the code was written to speed-up the CWT computation for a large number of 1D signals and relies on torch.nn.Conv1d for convolution.

PyTorch Wavelets

Citation

If you found this code useful, please cite our paper Repetition Estimation (IJCV, 2019):

@article{runia2019repetition,
  title={Repetition estimation},
  author={Runia, Tom FH and Snoek, Cees GM and Smeulders, Arnold WM},
  journal={International Journal of Computer Vision},
  volume={127},
  number={9},
  pages={1361--1383},
  year={2019},
  publisher={Springer}
}

Usage

In addition to the PyTorch implementation defined in WaveletTransformTorch the original SciPy version is also included in WaveletTransform for completeness. As the GPU implementation highly benefits from parallelization, the cwt and power methods expect signal batches of shape [num_signals,signal_length] instead of individual signals.

import numpy as np
from wavelets_pytorch.transform import WaveletTransform        # SciPy version
from wavelets_pytorch.transform import WaveletTransformTorch   # PyTorch version

dt = 0.1         # sampling frequency
dj = 0.125       # scale distribution parameter
batch_size = 32  # how many signals to process in parallel

# Batch of signals to process
batch = [batch_size x signal_length] 

# Initialize wavelet filter banks (scipy and torch implementation)
wa_scipy = WaveletTransform(dt, dj)
wa_torch = WaveletTransformTorch(dt, dj, cuda=True)

# Performing wavelet transform (and compute scalogram)
cwt_scipy = wa_scipy.cwt(batch)
cwt_torch = wa_torch.cwt(batch)

# For plotting, see the examples/plot.py function.
# ...

Supported Wavelets

The wavelet implementations are taken from here. Default is the Morlet wavelet.

Benchmark

Performing parallel CWT computation on the GPU using PyTorch results in a significant speed-up. Increasing the batch size will give faster runtimes. The plot below shows a comaprison between the scipy versus torch implementation as function of the batch size N and input signal length. These results were obtained on a powerful Linux desktop with NVIDIA Titan X GPU.

Installation

Clone and install:

git clone https://github.com/tomrunia/PyTorchWavelets.git
cd PyTorchWavelets
pip install -r requirements.txt
python setup.py install

Requirements

  • Python 2.7 or 3.6 (other versions might also work)
  • Numpy (developed with 1.14.1)
  • Scipy (developed with 1.0.0)
  • PyTorch >= 0.4.0

The core of the PyTorch implementation relies on the torch.nn.Conv1d module.

License

MIT License

Copyright (c) 2018 Tom Runia ([email protected])

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Tom Runia
Machine Learning
Tom Runia
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022