Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Overview

Box_Discretization_Network

This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method [link], which won the championship.

PPT link [Google Drive][Baidu Cloud]

Generate your own JSON: [Google Drive][Baidu Cloud]

Brief introduction (in Chinese): [Google Drive][Baidu Cloud]

Competition related

Competition model and config files (it needs a lot of video memory):

  • Paper [Link] (Exploring the Capacity of Sequential-free Box Discretization Networkfor Omnidirectional Scene Text Detection)

  • Config file [BaiduYun Link]. Models below all use this config file except directory. Results below are the multi-scale ensemble results. The very details are described in our updated paper.

  • MLT 2017 Model [BaiduYun Link].

MLT 2017 Recall Precision Hmean
new 76.44 82.75 79.47
ReCTS Detection Recall Precision Hmean
new 93.97 92.76 93.36
HRSC_2016 Recall Precision Hmean TIoU-Hmean AP
IJCAI version 94.8 46.0 61.96 51.1 93.7
new 94.1 83.8 88.65 73.3 89.22
  • Online demo is updating (the old demo version used a wrong configuration). This demo uses the MLT model provided above. It can detect multi-lingual text but can only recognize English, Chinese, and most of the symbols.

Description

Please see our paper at [link].

The advantages:

  • BDN can directly produce compact quadrilateral detection box. (segmentation-based methods need additional steps to group pixels & such steps usually sensitive to outliers)
  • BDN can avoid label confusion (non-segmentation-based methods are mostly sensitive to label sequence, which can significantly undermine the detection result). Comparison on ICDAR 2015 dataset showing different methods’ ability of resistant to the label confusion issue (by adding rotated pseudo samples). Textboxes++, East, and CTD are all Sesitive-to-Label-Sequence methods.
Textboxes++ [code] East [code] CTD [code] Ours
Variances (Hmean) ↓ 9.7% ↓ 13.7% ↓ 24.6% ↑ 0.3%

Getting Started

A basic example for training and testing. This mini example offers a pure baseline that takes less than 4 hours (with 4 1080 ti) to finalize training with only official training data.

Install anaconda

Link:https://pan.baidu.com/s/1TGy6O3LBHGQFzC20yJo8tg psw:vggx

Step-by-step install

conda create --name mb
conda activate mb
conda install ipython
pip install ninja yacs cython matplotlib tqdm scipy shapely
conda install pytorch=1.0 torchvision=0.2 cudatoolkit=9.0 -c pytorch
conda install -c menpo opencv
export INSTALL_DIR=$PWD
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
cd $INSTALL_DIR
git clone https://github.com/Yuliang-Liu/Box_Discretization_Network.git
cd Box_Discretization_Network
python setup.py build develop
  • MUST USE torchvision=0.2

Pretrained model:

[Link] unzip under project_root

(This is ONLY an ImageNet Model With a few iterations on ic15 training data for a stable initialization)

ic15 data

Prepare data follow COCO format. [Link] unzip under datasets/

Train

After downloading data and pretrained model, run

bash quick_train_guide.sh

Test with [TIoU]

Run

bash my_test.sh

Put kes.json to ic15_TIoU_metric/ inside ic15_TIoU_metric/

Run (conda deactivate; pip install Polygon2)

python2 to_eval.py

Example results:

  • mask branch 79.4 (test segm.json by changing to_eval.py (line 10: mode=0) );
  • kes branch 80.4;
  • in .yaml, set RESCORING=True -> 80.8;
  • Set RESCORING=True and RESCORING_GAMA=0.8 -> 81.0;
  • One can try many other tricks such as CROP_PROB_TRAIN, ROTATE_PROB_TRAIN, USE_DEFORMABLE, DEFORMABLE_PSROIPOOLING, PNMS, MSR, PAN in the project, whcih were all tested effective to improve the results. To achieve state-of-the-art performance, extra data (syntext, MLT, etc.) and proper training strategies are necessary.

Visualization

Run

bash single_image_demo.sh

Citation

If you find our method useful for your reserach, please cite

@article{liu2019omnidirectional,
  title={Omnidirectional Scene Text Detection with Sequential-free Box Discretization},
  author={Liu, Yuliang and Zhang, Sheng and Jin, Lianwen and Xie, Lele and Wu, Yaqiang and Wang, Zhepeng},
  journal={IJCAI},
  year={2019}
}
@article{liu2019exploring,
  title={Exploring the Capacity of Sequential-free Box Discretization Network for Omnidirectional Scene Text Detection},
  author={Liu, Yuliang and He, Tong and Chen, Hao and Wang, Xinyu and Luo, Canjie and Zhang, Shuaitao and Shen, Chunhua and Jin, Lianwen},
  journal={arXiv preprint arXiv:1912.09629},
  year={2019}
}

Feedback

Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected] or [email protected]. For commercial usage, please contact Prof. Lianwen Jin via [email protected].

Owner
Yuliang Liu
MMLab; South China University of Technology; University of Adelaide
Yuliang Liu
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022