Computational inteligence project on faces in the wild dataset

Overview

Table of Contents

  1. The general idea
  2. How these scripts work?
    1. Loading data
      1. Needed modules and global variables
      2. Parsing the arrays in dataset
      3. Extracting arrays for parsing
      4. Loading the dataset
    2. Adaboosted Decision Trees
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    3. Random Forrest
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    4. Bagged MLPs
      1. Needed modules and global variables
      2. Initializing global variables
      3. Initializing the meta classifier
    5. Some sort of bootstraping + Soft voting
      1. Needed modules and global variables
      2. Initializing global variables
      3. The pipeline
    6. The main script
      1. Needed modules
      2. Loading and manuplating the data
      3. Preprocessing data
      4. Using what have created so far
    7. Results
      1. Overall view
      2. Detailed discussion

The general idea

The general idea behind ensemble learning is that instead of a specific algorithm for classification, we have a meta classifier that takes advantage of couple of classic classifier. In this project we have these 4:

  1. Adaboosted decision trees
  2. Random forrest
  3. Bagged MLPs
  4. Some sort of bootstraping + Soft voting

It’s worth mentioning that every hard coded parameter is retrieved from previous projects and tests.

How these scripts work?

Loading data

Needed modules and global variables

from os.path import exists, join
import numpy as np


seprator = "\t"
dataset_folder = "lfw"
train_file = "pairsDevTrain.txt"
test_file = "pairsDevTest.txt"

Parsing the arrays in dataset

def parse_array(stringed_array):
    #parse the stringed array
    #return the array
    result = []
    for string in stringed_array:
        if "[" in string:
            string = string[2:]
        if "]" in string:
            string = string[:-2]
        for token in string.split():
            result.append(float(token))
    return np.array(result)

Extracting arrays for parsing

We need to figure out path to each txt file in dataset in order to load them as a string and then parse them and load them into memory using previous function.

def extract_array_from_line(path, line):
    #Name _ Pic.No1 _ Pic.No2
    #extract array from Pics and return them
    try:
        name, pic1, pic2 = line.split(seprator)
        pic1 = int(pic1)
        pic2 = int(pic2)
        pic1 = f'{name}_{pic1:04d}.txt'
        pic2 = f'{name}_{pic2:04d}.txt'

        final_path = join(path, name)
        final_pic1 = join(final_path, pic1)
        final_pic2 = join(final_path, pic2)
        parsed_pic1 = open(final_pic1, 'r').readlines()
        parsed_pic2 = open(final_pic2, 'r').readlines()


        parsed_pic1 = parse_array(parsed_pic1)
        parsed_pic2 = parse_array(parsed_pic2)
        return np.array([parsed_pic1, parsed_pic2])
    except Exception:
        name1, pic1, name2, pic2 = line.split(seprator)
        pic1 = int(pic1)
        pic2 = int(pic2)
        pic1 = f'{name1}_{pic1:04d}.txt'
        pic2 = f'{name2}_{pic2:04d}.txt'

        final_path1 = join(path, name1)
        final_path2 = join(path, name2)

        final_pic1 = join(final_path1, pic1)
        final_pic2 = join(final_path2, pic2)

        parsed_pic1 = open(final_pic1, 'r').readlines()
        parsed_pic2 = open(final_pic2, 'r').readlines()


        parsed_pic1 = parse_array(parsed_pic1)
        parsed_pic2 = parse_array(parsed_pic2)
        return np.array([parsed_pic1, parsed_pic2])

Loading the dataset

Now we use all the functions above to load our dataset.

def load(path):
    #check if the file exists
    # if not, return None
    # if yes, load the data
    # return the data
    if not exists(path):
        return None

    data_path = join(path, dataset_folder)
    train_path = join(path, train_file)
    test_path = join(path, test_file)
    train_data_plus = []
    test_data_plus = []
    train_data_negative = []
    test_data_negative = []
    train_path_handle = open(train_path, 'r')
    test_path_handle = open(test_path, 'r')

    for i, line in enumerate(train_path_handle.readlines()):
        if i == 0:
            count = int(line)
            continue
        if i <= count:
            train_data_plus.append(extract_array_from_line(data_path, line))
        else:
            train_data_negative.append(extract_array_from_line(data_path, line))

    for i, line in enumerate(test_path_handle.readlines()):
        if i == 0:
            count = int(line)
            continue
        if i <= count:
            test_data_plus.append(extract_array_from_line(data_path, line))
        else:
            test_data_negative.append(extract_array_from_line(data_path, line))

    return np.array(train_data_plus), np.array(train_data_negative), np.array(test_data_plus), np.array(test_data_negative)

Adaboosted Decision Trees

Sklearn’s implementation of all meta classifiers is used in this project.

Needed modules and global variables

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

The way I’ve modeled the data for this meta classifier, forms a vector from concatenating vector of each image, In other words imagine we have extracted parts of people’s DNA and we want to know whether they are related or not, First we form a table containing DNA parts of each of those people’s DNA in each row and we want our decision tree to figure out existence of any blood relationship. We are doing the samething here, each vector being image’s DNA and their concatenation being each row. We transform the data into our desired shape and then use this function to load them.

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data
    train_label = _train_label
    test_data = _test_data
    test_label = _test_label

Initializing the meta classifier

First we need to construct a decision tree classifier with our desired parameters and then passing that to our meta classifier and at the end train the meta classifier and the measure its performance. That’s what we do for all of meta classifiers in this project.

def get_populated_dtc(max_depth=8, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0):
    #Return a DecisionTreeClassifier object
    dtc = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease)
    return dtc

def adaboosted_dt():
    ab_dt = AdaBoostClassifier(
        get_populated_dtc(), n_estimators=100
    )

    return ab_dt.fit(train_data, train_label)

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

I’ll talk about its results and performance at the end of this document.

Random Forrest

Needed modules and global variables

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import numpy as np

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve experimented with a different way of modeling data, I’ve imagined that each vector is not just an array of features but it actually represents and actual vector in a 512 dimension and their differences and their distance can mean something, So this time I create a vector of size 513 which its first 512 elements are absolute value of two vectors and its last element is their distance.

def preprocess_data(d):
    #Calculate vector distance and absolute value of their difference
    res1 = []
    res2 = []
    for data in d:
        res = np.subtract(data[0], data[1])
        res1.append(np.abs(res))
        res2.append(np.linalg.norm(res))
    res = [np.append(x, y) for x, y in zip(res1, res2)]
    return np.array(res)

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data.reshape(len(_train_data), 2, -1)
    train_label = _train_label
    test_data = _test_data.reshape(len(_test_data), 2, -1)
    test_label = _test_label
    train_data = preprocess_data(train_data)
    test_data = preprocess_data(test_data)

Initializing the meta classifier

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

def handle_random_forrest():
    rfc = RandomForestClassifier(max_depth=8, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0)
    return rfc.fit(train_data, train_label)

Bagged MLPs

Needed modules and global variables

from sklearn.ensemble import BaggingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, adjusted_rand_score

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve used the same modeling as what I used in Adaboosted Decision Trees.

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data
    train_label = _train_label
    test_data = _test_data
    test_label = _test_label

Initializing the meta classifier

def get_populated_mlpc():
    #Return a MLPClassifier object
    mlpc = MLPClassifier()
    mlpc.set_params(hidden_layer_sizes=(200, 80, 20), alpha=0.032, random_state=1, solver="adam", activation="relu", max_iter=500)
    return mlpc

def bagged_mlp():
    bg_mlpc = BaggingClassifier(base_estimator= get_populated_mlpc(), n_estimators=20, random_state=1, n_jobs=12)
    return bg_mlpc.fit(train_data, train_label)

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

Some sort of bootstraping + Soft voting

Here I’ve taken advantage of three different classifiers:

  1. SVM
  2. MLP
  3. DT

I loop over them and in each iteration train them on a random subset of dataset and modify an array of weights based on their performance and at the very end I pass them to a VotingClassifier and train that meta classifier on the whole dataset.

Needed modules and global variables

from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

from sklearn.metrics import accuracy_score
import numpy as np

train_data = None
train_label = None
test_data = None
test_label = None

Initializing global variables

Here I’ve used same modeling as RandomForrest.

def preprocess_data(d):
    #Calculate vector distance and absolute value of their difference
    res1 = []
    res2 = []
    for data in d:
        res = np.subtract(data[0], data[1])
        res1.append(np.abs(res))
        res2.append(np.linalg.norm(res))
    res = [np.append(x, y) for x, y in zip(res1, res2)]
    return np.array(res)

def init_vars(_train_data, _train_label, _test_data, _test_label):
    #Initializez global variables
    global train_data
    global train_label
    global test_data
    global test_label
    train_data = _train_data.reshape(len(_train_data), 2, -1)
    train_label = _train_label
    test_data = _test_data.reshape(len(_test_data), 2, -1)
    test_label = _test_label
    train_data = preprocess_data(train_data)
    test_data = preprocess_data(test_data)

The pipeline

last_acc[0]: weights[0] += 0.05 elif mlp_acc > last_acc[1]: weights[1] += 0.05 elif dt_acc > last_acc[2]: weights[2] += 0.05 last_acc = [svm_acc, mlp_acc, dt_acc] if debug: print("**SVM: {}, MLP: {}, DT: {}**".format(svm_acc, mlp_acc, dt_acc)) svm_acc = svm_acc * weights[0] mlp_acc = mlp_acc * weights[1] dt_acc = dt_acc * weights[2] if debug: print("##SVM: {}, MLP: {}, DT: {}##".format(svm_acc, mlp_acc, dt_acc)) if svm_acc > mlp_acc and svm_acc > dt_acc: weights[0] += 0.1 elif mlp_acc > svm_acc and mlp_acc > dt_acc: weights[1] += 0.1 elif dt_acc > svm_acc and dt_acc > mlp_acc: weights[2] += 0.1 vt_svm_mlp_dt = VotingClassifier(estimators=[ ('svm', svm), ('mlp', mlp), ('dt', dt)], voting='soft', weights=weights, n_jobs=12) res = vt_svm_mlp_dt.fit(train_data, train_label) if debug: print("Final accuracy: {}".format(test_accuracy(res)[0])) return res">
def get_random_samples(number_of_samples=3):
    #Return a list of random samples from dataset
    res = []
    for _ in range(number_of_samples):
        indexes = np.random.choice(len(train_data), size=(int(len(train_data) / number_of_samples)), replace=False)
        res.append(indexes)
    return res

def test_accuracy_pipeline(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    return test1

def test_accuracy(trained_model):
    test1 = accuracy_score(test_label, trained_model.predict(test_data))
    train1 = accuracy_score(train_label, trained_model.predict(train_data))
    return test1, train1

def pipeline(debug=False):
    svm = SVC(decision_function_shape="ovr", kernel="rbf", probability=True)
    mlp = MLPClassifier(hidden_layer_sizes=(40, 30, 20, 30, 40), alpha=0.032, random_state=1, solver="adam", activation="relu", max_iter=500)
    dt = DecisionTreeClassifier(max_depth=64, min_samples_split=2, min_samples_leaf=4, min_impurity_decrease=0.0)
    weights = [1 / 3, 1 / 3, 1 / 3]
    last_acc = [0, 0, 0]
    for _ in range(10):
        samples = get_random_samples()
        svm.fit(train_data[samples[0]], train_label[samples[0]])
        mlp.fit(train_data[samples[1]], train_label[samples[1]])
        dt.fit(train_data[samples[2]], train_label[samples[2]])
        svm_acc = test_accuracy_pipeline(svm)
        mlp_acc = test_accuracy_pipeline(mlp)
        dt_acc = test_accuracy_pipeline(dt)
        if svm_acc < last_acc[0]:
            weights[0] -= 0.05
        elif mlp_acc < last_acc[1]:
            weights[1] -= 0.05
        elif dt_acc < last_acc[2]:
            weights[2] -= 0.05
        if svm_acc > last_acc[0]:
            weights[0] += 0.05
        elif mlp_acc > last_acc[1]:
            weights[1] += 0.05
        elif dt_acc > last_acc[2]:
            weights[2] += 0.05
        last_acc = [svm_acc, mlp_acc, dt_acc]
        if debug:
            print("**SVM: {}, MLP: {}, DT: {}**".format(svm_acc, mlp_acc, dt_acc))
        svm_acc = svm_acc * weights[0]
        mlp_acc = mlp_acc * weights[1]
        dt_acc = dt_acc * weights[2]
        if debug:
            print("##SVM: {}, MLP: {}, DT: {}##".format(svm_acc, mlp_acc, dt_acc))
        if svm_acc > mlp_acc and svm_acc > dt_acc:
            weights[0] += 0.1
        elif mlp_acc > svm_acc and mlp_acc > dt_acc:
            weights[1] += 0.1
        elif dt_acc > svm_acc and dt_acc > mlp_acc:
            weights[2] += 0.1


    vt_svm_mlp_dt = VotingClassifier(estimators=[
        ('svm', svm), ('mlp', mlp), ('dt', dt)],
        voting='soft', weights=weights, n_jobs=12)

    res = vt_svm_mlp_dt.fit(train_data, train_label)
    if debug:
        print("Final accuracy: {}".format(test_accuracy(res)[0]))
    return res

The main script

Needed modules

import numpy as np
from utils.data_loader import load
import utils.ensemble_dt as edt
import utils.ensemble_bag_mlp as ebm
import utils.svm_mlp_dt_combo as smdt
import utils.ensemble_rf as erf
from sklearn import preprocessing
from tabulate import tabulate

Loading and manuplating the data

Here I transform loaded data into the form I explained in AdaBoostClassifier section.

train_plus, train_negative, test_plus, test_negative = load("/home/toorajtaraz/Downloads/project/")
train_data_count = train_plus.shape[0]
test_data_count = test_plus.shape[0]

train_plus = train_plus.reshape((train_data_count, -1))
train_negative = train_negative.reshape((train_data_count, -1))
test_plus = test_plus.reshape((test_data_count, -1))
test_negative = test_negative.reshape((test_data_count, -1))

train_data = []
train_label = []

test_data = []
test_label = []

for x in train_plus:
    train_data.append(x)
    train_label.append(1)

for x in train_negative:
    train_data.append(x)
    train_label.append(0)

for x in test_plus:
    test_data.append(x)
    test_label.append(1)

for x in test_negative:
    test_data.append(x)
    test_label.append(0)

test_data = np.array(test_data)
train_data = np.array(train_data)
test_label = np.array(test_label)
train_label = np.array(train_label)

Preprocessing data

Sklearn Library offers a module that takes care of standardizing the data, this action improves convergence time and accuracy (at least based on what I witnessed).

scaler = preprocessing.StandardScaler().fit(train_data)
train_data = scaler.transform(train_data)

scaler = preprocessing.StandardScaler().fit(test_data)
test_data = scaler.transform(test_data)

Using what have created so far

edt.init_vars(train_data, train_label, test_data, test_label)
adaboosted_dt_acc = edt.test_accuracy(edt.adaboosted_dt())

ebm.init_vars(train_data, train_label, test_data, test_label)
bagged_mlp_acc = ebm.test_accuracy(ebm.bagged_mlp())

smdt.init_vars(train_data, train_label, test_data, test_label)
svm_mlp_dt_combo_acc = smdt.test_accuracy(smdt.pipeline(debug=True))

erf.init_vars(train_data, train_label, test_data, test_label)
random_forrest_acc = erf.test_accuracy(erf.handle_random_forrest())

Results

Overall view

TYPE                   TEST_P TRAIN_P 
AdaboostedDecisionTree 0.578     1    
      BaggedMLP        0.766  0.997273
      SVM_MLP_DT       0.844  0.963636
     RandomForest       0.81  0.985909

Detailed discussion

In case of AdaboostedDecisionTree, it performed as I excepted, very well on train dataset and poorly on test dataset due to over fitting. BaggedMLPs didn’t perform very well as excepted, just about 2000 data samples are not enough for training a MLP. At first I intended to extract data from dataset folder and train my model on a larger dataset, but I figured due to our point being related to the accuracy we achieve it wouldn’t be ethical :)) RandomForest and my customish algorithm performed better than the others. During my tests I concluded that SVM with RBF kernel performs the best and the ensemble final accuracy is really close to SVM’s accuracy, but I assume it wouldn’t be the case if we had a large enough dataset, in that case MLP would be the dominant model in voting.

Owner
tooraj taraz
experienced C developer, RUST lover, linux enthusiast and familiar with backend development(express.js, django, rocket)
tooraj taraz
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022