Mock smart contracts for writing Ethereum test suites

Overview

Automated test suite

Documentation Status

Mock smart contracts for writing Ethereum test suites

This package contains common Ethereum smart contracts to be used in automated test suites. This was created for Trading Strategy, but can be used for any other projects as well. As opposite to slower and messier mainnet forking test strategies, this project aims to explicit clean deployments and very fast test execution.

Smart contract support includes

  • ERC-20 token
  • SushiSwap: router, factory, pool (Uniswap v2, PancakeSwape, QuickSwap, Trader Joe and others are 99% Sushiswap compatible)
  • High-quality API documentation
  • Full type hinting support for optimal developer experience
  • (More integrations to come)

Table of contents

Precompiled ABI file distribution

This package primarly supports Python, Web3.p3 and Brownie developers. For other programming languages and frameworks, you can find precompiled Solidity smart contracts in abi folder.

These files are good to go with any framework:

  • Web3.js
  • Ethers.js
  • Hardhat
  • Truffle
  • Web3j

Each JSON file has abi and bytecode keys you need to deploy a contract.

Just download and embed in your project. The compiled source code files are mixture of MIT and GPL v2 license.

Python usage

The Python support is available as smart_contract_test_fixtures Python package.

The package depends only on web3.py and not others, like Brownie. It grabs popular ABI files with their bytecode and compilation artifacts so that the contracts are easily deployable on any Ethereum tester interface. No Ganache is needed and everything can be executed on faster eth-tester enginer.

[Read the full API documnetation](High-quality API documentation). For code examples please see below.

Prerequisites

ERC-20 token example

To use the package to deploy a simple ERC-20 token in pytest testing:

str: """User account.""" return web3.eth.accounts[1] @pytest.fixture() def user_2(web3) -> str: """User account.""" return web3.eth.accounts[2] def test_deploy_token(web3: Web3, deployer: str): """Deploy mock ERC-20.""" token = create_token(web3, deployer, "Hentai books token", "HENTAI", 100_000 * 10**18) assert token.functions.name().call() == "Hentai books token" assert token.functions.symbol().call() == "HENTAI" assert token.functions.totalSupply().call() == 100_000 * 10**18 assert token.functions.decimals().call() == 18 def test_tranfer_tokens_between_users(web3: Web3, deployer: str, user_1: str, user_2: str): """Transfer tokens between users.""" token = create_token(web3, deployer, "Telos EVM rocks", "TELOS", 100_000 * 10**18) # Move 10 tokens from deployer to user1 token.functions.transfer(user_1, 10 * 10**18).transact({"from": deployer}) assert token.functions.balanceOf(user_1).call() == 10 * 10**18 # Move 10 tokens from deployer to user1 token.functions.transfer(user_2, 6 * 10**18).transact({"from": user_1}) assert token.functions.balanceOf(user_1).call() == 4 * 10**18 assert token.functions.balanceOf(user_2).call() == 6 * 10**18">
import pytest
from web3 import Web3, EthereumTesterProvider

from smart_contracts_for_testing.token import create_token


@pytest.fixture
def tester_provider():
    return EthereumTesterProvider()


@pytest.fixture
def eth_tester(tester_provider):
    return tester_provider.ethereum_tester


@pytest.fixture
def web3(tester_provider):
    return Web3(tester_provider)


@pytest.fixture()
def deployer(web3) -> str:
    """Deploy account."""
    return web3.eth.accounts[0]


@pytest.fixture()
def user_1(web3) -> str:
    """User account."""
    return web3.eth.accounts[1]


@pytest.fixture()
def user_2(web3) -> str:
    """User account."""
    return web3.eth.accounts[2]


def test_deploy_token(web3: Web3, deployer: str):
    """Deploy mock ERC-20."""
    token = create_token(web3, deployer, "Hentai books token", "HENTAI", 100_000 * 10**18)
    assert token.functions.name().call() == "Hentai books token"
    assert token.functions.symbol().call() == "HENTAI"
    assert token.functions.totalSupply().call() == 100_000 * 10**18
    assert token.functions.decimals().call() == 18


def test_tranfer_tokens_between_users(web3: Web3, deployer: str, user_1: str, user_2: str):
    """Transfer tokens between users."""
    token = create_token(web3, deployer, "Telos EVM rocks", "TELOS", 100_000 * 10**18)

    # Move 10 tokens from deployer to user1
    token.functions.transfer(user_1, 10 * 10**18).transact({"from": deployer})
    assert token.functions.balanceOf(user_1).call() == 10 * 10**18

    # Move 10 tokens from deployer to user1
    token.functions.transfer(user_2, 6 * 10**18).transact({"from": user_1})
    assert token.functions.balanceOf(user_1).call() == 4 * 10**18
    assert token.functions.balanceOf(user_2).call() == 6 * 10**18

See full example.

For more information how to user Web3.py in testing, see Web3.py documentation.

Uniswap swap example

WETH path = [usdc.address, weth.address] # Path tell how the swap is routed # https://docs.uniswap.org/protocol/V2/reference/smart-contracts/router-02#swapexacttokensfortokens router.functions.swapExactTokensForTokens( usdc_amount_to_pay, 0, path, user_1, FOREVER_DEADLINE, ).transact({ "from": user_1 }) # Check the user_1 received ~0.284 ethers assert weth.functions.balanceOf(user_1).call() / 1e18 == pytest.approx(0.28488156127668085)">
import pytest
from web3 import Web3
from web3.contract import Contract

from smart_contracts_for_testing.uniswap_v2 import UniswapV2Deployment, deploy_trading_pair, FOREVER_DEADLINE


def test_swap(web3: Web3, deployer: str, user_1: str, uniswap_v2: UniswapV2Deployment, weth: Contract, usdc: Contract):
    """User buys WETH on Uniswap v2 using mock USDC."""

    # Create the trading pair and add initial liquidity
    deploy_trading_pair(
        web3,
        deployer,
        uniswap_v2,
        weth,
        usdc,
        10 * 10**18,  # 10 ETH liquidity
        17_000 * 10**18,  # 17000 USDC liquidity
    )

    router = uniswap_v2.router

    # Give user_1 500 dollars to buy ETH and approve it on the router
    usdc_amount_to_pay = 500 * 10**18
    usdc.functions.transfer(user_1, usdc_amount_to_pay).transact({"from": deployer})
    usdc.functions.approve(router.address, usdc_amount_to_pay).transact({"from": user_1})

    # Perform a swap USDC->WETH
    path = [usdc.address, weth.address]  # Path tell how the swap is routed
    # https://docs.uniswap.org/protocol/V2/reference/smart-contracts/router-02#swapexacttokensfortokens
    router.functions.swapExactTokensForTokens(
        usdc_amount_to_pay,
        0,
        path,
        user_1,
        FOREVER_DEADLINE,
    ).transact({
        "from": user_1
    })

    # Check the user_1 received ~0.284 ethers
    assert weth.functions.balanceOf(user_1).call() / 1e18 == pytest.approx(0.28488156127668085)

See the full example.

How to use the library in your Python project

Add smart_contract_test_fixtures as a development dependency:

Using Poetry:

poetry add -D smart_contract_test_fixtures

Development

This step will extract compiled smart contract from Sushiswap repository.

Requires

  • Node v14
  • npx
  • yarn
  • GNU Make
  • Unix shell

Make

To build the ABI distribution:

git submodule update --recursive --init
make all

See SushiSwap continuous integration files for more information.

Version history

See change log.

Discord

Join Discord for any questions.

Notes

Currently there is no Brownie support. To support Brownie, one would need to figure out how to import an existing Hardhat based project (Sushiswap) to Brownie project format.

License

MIT

Owner
Trading Strategy
Algorithmic trading for decentralised markets
Trading Strategy
LuluTest is a Python framework for creating automated browser tests.

LuluTest LuluTest is an open source browser automation framework using Python and Selenium. It is relatively lightweight in that it mostly provides wr

Erik Whiting 14 Sep 26, 2022
Useful additions to Django's default TestCase

django-test-plus Useful additions to Django's default TestCase from REVSYS Rationale Let's face it, writing tests isn't always fun. Part of the reason

REVSYS 546 Dec 22, 2022
d4rk Ghost is all in one hacking framework For red team Pentesting

d4rk ghost is all in one Hacking framework For red team Pentesting it contains all modules , information_gathering exploitation + vulnerability scanning + ddos attacks with 12 methods + proxy scraper

d4rk sh4d0w 15 Dec 15, 2022
The Good Old Days. | Testing Out A New Module-

The-Good-Old-Days. The Good Old Days. | Testing Out A New Module- Installation Asciimatics supports Python versions 2 & 3. For the precise list of tes

Syntax. 2 Jun 08, 2022
PyBuster A directory busting tool for web application penetration tester, written in python

PyBuster A directory busting tool for web application penetration tester, written in python. Supports custom wordlist,recursive search. Screenshots Pr

Anukul Pandey 4 Jan 30, 2022
It helps to use fixtures in pytest.mark.parametrize

pytest-lazy-fixture Use your fixtures in @pytest.mark.parametrize. Installation pip install pytest-lazy-fixture Usage import pytest @pytest.fixture(p

Marsel Zaripov 299 Dec 24, 2022
WEB PENETRATION TESTING TOOL 💥

N-WEB ADVANCE WEB PENETRATION TESTING TOOL Features 🎭 Admin Panel Finder Admin Scanner Dork Generator Advance Dork Finder Extract Links No Redirect H

56 Dec 23, 2022
This package is a python library with tools for the Molecular Simulation - Software Gromos.

This package is a python library with tools for the Molecular Simulation - Software Gromos. It allows you to easily set up, manage and analyze simulations in python.

14 Sep 28, 2022
Selects tests affected by changed files. Continous test runner when used with pytest-watch.

This is a pytest plug-in which automatically selects and re-executes only tests affected by recent changes. How is this possible in dynamic language l

Tibor Arpas 614 Dec 30, 2022
A automated browsing experience.

browser-automation This app is an automated browsing technique where one has to enter the required information, it's just like searching for Animals o

Ojas Barawal 3 Aug 04, 2021
A friendly wrapper for modern SQLAlchemy and Alembic

A friendly wrapper for modern SQLAlchemy (v1.4 or later) and Alembic. Documentation: https://jpsca.github.io/sqla-wrapper/ Includes: A SQLAlchemy wrap

Juan-Pablo Scaletti 129 Nov 28, 2022
Make Selenium work on Github Actions

Make Selenium work on Github Actions Scraping with BeautifulSoup on GitHub Actions is easy-peasy. But what about Selenium?? After you jump through som

Jonathan Soma 33 Dec 27, 2022
A pytest plugin to skip `@pytest.mark.slow` tests by default.

pytest-skip-slow A pytest plugin to skip @pytest.mark.slow tests by default. Include the slow tests with --slow. Installation $ pip install pytest-ski

Brian Okken 19 Jan 04, 2023
create custom test databases that are populated with fake data

About Generate fake but valid data filled databases for test purposes using most popular patterns(AFAIK). Current support is sqlite, mysql, postgresql

Emir Ozer 2.2k Jan 04, 2023
A testing system for catching visual regressions in Web applications.

Huxley Watches you browse, takes screenshots, tells you when they change Huxley is a test-like system for catching visual regressions in Web applicati

Facebook Archive 4.1k Nov 30, 2022
Auto-hms-action - Automation of NU Health Management System

🦾 Automation of NU Health Management System 🤖 長崎大学 健康管理システムの自動化 🏯 Usage / 使い方

k5-mot 3 Mar 04, 2022
HTTP client mocking tool for Python - inspired by Fakeweb for Ruby

HTTPretty 1.0.5 HTTP Client mocking tool for Python created by Gabriel Falcão . It provides a full fake TCP socket module. Inspired by FakeWeb Github

Gabriel Falcão 2k Jan 06, 2023
Load and performance benchmark tool

Yandex Tank Yandextank has been moved to Python 3. Latest stable release for Python 2 here. Yandex.Tank is an extensible open source load testing tool

Yandex 2.2k Jan 03, 2023
0hh1 solver for the web (selenium) and also for mobile (adb)

0hh1 - Solver Aims to solve the '0hh1 puzzle' for all the sizes (4x4, 6x6, 8x8, 10x10 12x12). for both the web version (using selenium) and on android

Adwaith Rajesh 1 Nov 05, 2021
Django-google-optimize is a Django application designed to make running server side Google Optimize A/B tests easy.

Django-google-optimize Django-google-optimize is a Django application designed to make running Google Optimize A/B tests easy. Here is a tutorial on t

Adin Hodovic 39 Oct 25, 2022