Mock smart contracts for writing Ethereum test suites

Overview

Automated test suite

Documentation Status

Mock smart contracts for writing Ethereum test suites

This package contains common Ethereum smart contracts to be used in automated test suites. This was created for Trading Strategy, but can be used for any other projects as well. As opposite to slower and messier mainnet forking test strategies, this project aims to explicit clean deployments and very fast test execution.

Smart contract support includes

  • ERC-20 token
  • SushiSwap: router, factory, pool (Uniswap v2, PancakeSwape, QuickSwap, Trader Joe and others are 99% Sushiswap compatible)
  • High-quality API documentation
  • Full type hinting support for optimal developer experience
  • (More integrations to come)

Table of contents

Precompiled ABI file distribution

This package primarly supports Python, Web3.p3 and Brownie developers. For other programming languages and frameworks, you can find precompiled Solidity smart contracts in abi folder.

These files are good to go with any framework:

  • Web3.js
  • Ethers.js
  • Hardhat
  • Truffle
  • Web3j

Each JSON file has abi and bytecode keys you need to deploy a contract.

Just download and embed in your project. The compiled source code files are mixture of MIT and GPL v2 license.

Python usage

The Python support is available as smart_contract_test_fixtures Python package.

The package depends only on web3.py and not others, like Brownie. It grabs popular ABI files with their bytecode and compilation artifacts so that the contracts are easily deployable on any Ethereum tester interface. No Ganache is needed and everything can be executed on faster eth-tester enginer.

[Read the full API documnetation](High-quality API documentation). For code examples please see below.

Prerequisites

ERC-20 token example

To use the package to deploy a simple ERC-20 token in pytest testing:

str: """User account.""" return web3.eth.accounts[1] @pytest.fixture() def user_2(web3) -> str: """User account.""" return web3.eth.accounts[2] def test_deploy_token(web3: Web3, deployer: str): """Deploy mock ERC-20.""" token = create_token(web3, deployer, "Hentai books token", "HENTAI", 100_000 * 10**18) assert token.functions.name().call() == "Hentai books token" assert token.functions.symbol().call() == "HENTAI" assert token.functions.totalSupply().call() == 100_000 * 10**18 assert token.functions.decimals().call() == 18 def test_tranfer_tokens_between_users(web3: Web3, deployer: str, user_1: str, user_2: str): """Transfer tokens between users.""" token = create_token(web3, deployer, "Telos EVM rocks", "TELOS", 100_000 * 10**18) # Move 10 tokens from deployer to user1 token.functions.transfer(user_1, 10 * 10**18).transact({"from": deployer}) assert token.functions.balanceOf(user_1).call() == 10 * 10**18 # Move 10 tokens from deployer to user1 token.functions.transfer(user_2, 6 * 10**18).transact({"from": user_1}) assert token.functions.balanceOf(user_1).call() == 4 * 10**18 assert token.functions.balanceOf(user_2).call() == 6 * 10**18">
import pytest
from web3 import Web3, EthereumTesterProvider

from smart_contracts_for_testing.token import create_token


@pytest.fixture
def tester_provider():
    return EthereumTesterProvider()


@pytest.fixture
def eth_tester(tester_provider):
    return tester_provider.ethereum_tester


@pytest.fixture
def web3(tester_provider):
    return Web3(tester_provider)


@pytest.fixture()
def deployer(web3) -> str:
    """Deploy account."""
    return web3.eth.accounts[0]


@pytest.fixture()
def user_1(web3) -> str:
    """User account."""
    return web3.eth.accounts[1]


@pytest.fixture()
def user_2(web3) -> str:
    """User account."""
    return web3.eth.accounts[2]


def test_deploy_token(web3: Web3, deployer: str):
    """Deploy mock ERC-20."""
    token = create_token(web3, deployer, "Hentai books token", "HENTAI", 100_000 * 10**18)
    assert token.functions.name().call() == "Hentai books token"
    assert token.functions.symbol().call() == "HENTAI"
    assert token.functions.totalSupply().call() == 100_000 * 10**18
    assert token.functions.decimals().call() == 18


def test_tranfer_tokens_between_users(web3: Web3, deployer: str, user_1: str, user_2: str):
    """Transfer tokens between users."""
    token = create_token(web3, deployer, "Telos EVM rocks", "TELOS", 100_000 * 10**18)

    # Move 10 tokens from deployer to user1
    token.functions.transfer(user_1, 10 * 10**18).transact({"from": deployer})
    assert token.functions.balanceOf(user_1).call() == 10 * 10**18

    # Move 10 tokens from deployer to user1
    token.functions.transfer(user_2, 6 * 10**18).transact({"from": user_1})
    assert token.functions.balanceOf(user_1).call() == 4 * 10**18
    assert token.functions.balanceOf(user_2).call() == 6 * 10**18

See full example.

For more information how to user Web3.py in testing, see Web3.py documentation.

Uniswap swap example

WETH path = [usdc.address, weth.address] # Path tell how the swap is routed # https://docs.uniswap.org/protocol/V2/reference/smart-contracts/router-02#swapexacttokensfortokens router.functions.swapExactTokensForTokens( usdc_amount_to_pay, 0, path, user_1, FOREVER_DEADLINE, ).transact({ "from": user_1 }) # Check the user_1 received ~0.284 ethers assert weth.functions.balanceOf(user_1).call() / 1e18 == pytest.approx(0.28488156127668085)">
import pytest
from web3 import Web3
from web3.contract import Contract

from smart_contracts_for_testing.uniswap_v2 import UniswapV2Deployment, deploy_trading_pair, FOREVER_DEADLINE


def test_swap(web3: Web3, deployer: str, user_1: str, uniswap_v2: UniswapV2Deployment, weth: Contract, usdc: Contract):
    """User buys WETH on Uniswap v2 using mock USDC."""

    # Create the trading pair and add initial liquidity
    deploy_trading_pair(
        web3,
        deployer,
        uniswap_v2,
        weth,
        usdc,
        10 * 10**18,  # 10 ETH liquidity
        17_000 * 10**18,  # 17000 USDC liquidity
    )

    router = uniswap_v2.router

    # Give user_1 500 dollars to buy ETH and approve it on the router
    usdc_amount_to_pay = 500 * 10**18
    usdc.functions.transfer(user_1, usdc_amount_to_pay).transact({"from": deployer})
    usdc.functions.approve(router.address, usdc_amount_to_pay).transact({"from": user_1})

    # Perform a swap USDC->WETH
    path = [usdc.address, weth.address]  # Path tell how the swap is routed
    # https://docs.uniswap.org/protocol/V2/reference/smart-contracts/router-02#swapexacttokensfortokens
    router.functions.swapExactTokensForTokens(
        usdc_amount_to_pay,
        0,
        path,
        user_1,
        FOREVER_DEADLINE,
    ).transact({
        "from": user_1
    })

    # Check the user_1 received ~0.284 ethers
    assert weth.functions.balanceOf(user_1).call() / 1e18 == pytest.approx(0.28488156127668085)

See the full example.

How to use the library in your Python project

Add smart_contract_test_fixtures as a development dependency:

Using Poetry:

poetry add -D smart_contract_test_fixtures

Development

This step will extract compiled smart contract from Sushiswap repository.

Requires

  • Node v14
  • npx
  • yarn
  • GNU Make
  • Unix shell

Make

To build the ABI distribution:

git submodule update --recursive --init
make all

See SushiSwap continuous integration files for more information.

Version history

See change log.

Discord

Join Discord for any questions.

Notes

Currently there is no Brownie support. To support Brownie, one would need to figure out how to import an existing Hardhat based project (Sushiswap) to Brownie project format.

License

MIT

Owner
Trading Strategy
Algorithmic trading for decentralised markets
Trading Strategy
Using openpyxl in Python, performed following task

Python-Automation-with-openpyxl Using openpyxl in Python, performed following tasks on an Excel Sheet containing Product Suppliers along with their pr

1 Apr 06, 2022
AutoExploitSwagger is an automated API security testing exploit tool that can be combined with xray, BurpSuite and other scanners.

AutoExploitSwagger is an automated API security testing exploit tool that can be combined with xray, BurpSuite and other scanners.

6 Jan 28, 2022
CNE-OVS-SIT - OVS System Integration Test Suite

CNE-OVS-SIT - OVS System Integration Test Suite Introduction User guide Discussion Introduction CNE-OVS-SIT is a test suite for OVS end-to-end functio

4 Jan 09, 2022
UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for participants to obtain a merit

About UUM Merit Form Filler UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for par

Ilham Rachmat 3 May 31, 2022
Scalable user load testing tool written in Python

Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst

Locust.io 20.4k Jan 04, 2023
Auto-hms-action - Automation of NU Health Management System

🦾 Automation of NU Health Management System 🤖 長崎大学 健康管理システムの自動化 🏯 Usage / 使い方

k5-mot 3 Mar 04, 2022
Code coverage measurement for Python

Coverage.py Code coverage testing for Python. Coverage.py measures code coverage, typically during test execution. It uses the code analysis tools and

Ned Batchelder 2.3k Jan 04, 2023
Sixpack is a language-agnostic a/b-testing framework

Sixpack Sixpack is a framework to enable A/B testing across multiple programming languages. It does this by exposing a simple API for client libraries

1.7k Dec 24, 2022
Local continuous test runner with pytest and watchdog.

pytest-watch -- Continuous pytest runner pytest-watch a zero-config CLI tool that runs pytest, and re-runs it when a file in your project changes. It

Joe Esposito 675 Dec 23, 2022
Mypy static type checker plugin for Pytest

pytest-mypy Mypy static type checker plugin for pytest Features Runs the mypy static type checker on your source files as part of your pytest test run

Dan Bader 218 Jan 03, 2023
WEB PENETRATION TESTING TOOL 💥

N-WEB ADVANCE WEB PENETRATION TESTING TOOL Features 🎭 Admin Panel Finder Admin Scanner Dork Generator Advance Dork Finder Extract Links No Redirect H

56 Dec 23, 2022
FakeDataGen is a Full Valid Fake Data Generator.

FakeDataGen is a Full Valid Fake Data Generator. This tool helps you to create fake accounts (in Spanish format) with fully valid data. Within this in

Joel GM 64 Dec 12, 2022
The pytest framework makes it easy to write small tests, yet scales to support complex functional testing

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries. An example o

pytest-dev 9.6k Jan 02, 2023
Python selenium script to bypass simaster.ugm.ac.id weak captcha.

Python selenium script to bypass simaster.ugm.ac.id weak "captcha".

Hafidh R K 1 Feb 01, 2022
HTTP load generator, ApacheBench (ab) replacement, formerly known as rakyll/boom

hey is a tiny program that sends some load to a web application. hey was originally called boom and was influenced from Tarek Ziade's tool at tarekzia

Jaana Dogan 14.9k Jan 07, 2023
Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes in a variety of languages.

Mimesis - Fake Data Generator Description Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes

Isaak Uchakaev 3.8k Dec 29, 2022
Useful additions to Django's default TestCase

django-test-plus Useful additions to Django's default TestCase from REVSYS Rationale Let's face it, writing tests isn't always fun. Part of the reason

REVSYS 546 Dec 22, 2022
Coverage plugin for pytest.

Overview docs tests package This plugin produces coverage reports. Compared to just using coverage run this plugin does some extras: Subprocess suppor

pytest-dev 1.4k Dec 29, 2022
Codeforces Test Parser for C/C++ & Python on Windows

Codeforces Test Parser for C/C++ & Python on Windows Installation Run pip instal

Minh Vu 2 Jan 05, 2022
Declarative HTTP Testing for Python and anything else

Gabbi Release Notes Gabbi is a tool for running HTTP tests where requests and responses are represented in a declarative YAML-based form. The simplest

Chris Dent 139 Sep 21, 2022