A TensorFlow implementation of the Mnemonic Descent Method.

Overview

MDM

A Tensorflow implementation of the Mnemonic Descent Method.

Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment
G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, S. Zafeiriou.
Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR'16).
Las Vegas, NV, USA, June 2016.

Installation Instructions

Menpo

We are an avid supporter of the Menpo project (http://www.menpo.org/) which we use in various ways throughout the implementation.

Please look at the installation instructions at:

http://www.menpo.org/installation/

TensorFlow

Follow the installation instructions of Tensorflow at and install it inside the conda enviroment you have created

https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#installing-from-sources

but use

git clone https://github.com/trigeorgis/tensorflow.git

as the TensorFlow repo. This is a fork of Tensorflow (#ff75787c) but it includes some extra C++ ops, such as for the extraction of patches around the landmarks.

Pretrained models

Disclaimer: The pretrained models can only be used for non-commercial academic purposes.

A pretrained model on 300W train set can be found at: https://www.doc.ic.ac.uk/~gt108/theano_mdm.pb

Training a model

Currently the TensorFlow implementation does not contain the same data augmnetation steps as we did in the paper, but this will be updated shortly.

    # Activate the conda environment where tf/menpo resides.
    source activate menpo
    
    # Start training
    python mdm_train.py --datasets='databases/lfpw/trainset/*.png:databases/afw/*.jpg:databases/helen/trainset/*.jpg'
    
    # Track the train process and evaluate the current checkpoint against the validation set
    python mdm_eval.py --dataset_path="./databases/ibug/*.jpg" --num_examples=135 --eval_dir=ckpt/eval_ibug  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    python mdm_eval.py --dataset_path="./databases/lfpw/testset/*.png" --num_examples=300 --eval_dir=ckpt/eval_lfpw  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    python mdm_eval.py --dataset_path="./databases/helen/testset/*.jpg" --num_examples=330 --eval_dir=ckpt/eval_helen  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    # Run tensorboard to visualise the results
    tensorboard --logdir==$PWD/ckpt
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022