A TensorFlow implementation of the Mnemonic Descent Method.

Overview

MDM

A Tensorflow implementation of the Mnemonic Descent Method.

Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment
G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, S. Zafeiriou.
Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR'16).
Las Vegas, NV, USA, June 2016.

Installation Instructions

Menpo

We are an avid supporter of the Menpo project (http://www.menpo.org/) which we use in various ways throughout the implementation.

Please look at the installation instructions at:

http://www.menpo.org/installation/

TensorFlow

Follow the installation instructions of Tensorflow at and install it inside the conda enviroment you have created

https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#installing-from-sources

but use

git clone https://github.com/trigeorgis/tensorflow.git

as the TensorFlow repo. This is a fork of Tensorflow (#ff75787c) but it includes some extra C++ ops, such as for the extraction of patches around the landmarks.

Pretrained models

Disclaimer: The pretrained models can only be used for non-commercial academic purposes.

A pretrained model on 300W train set can be found at: https://www.doc.ic.ac.uk/~gt108/theano_mdm.pb

Training a model

Currently the TensorFlow implementation does not contain the same data augmnetation steps as we did in the paper, but this will be updated shortly.

    # Activate the conda environment where tf/menpo resides.
    source activate menpo
    
    # Start training
    python mdm_train.py --datasets='databases/lfpw/trainset/*.png:databases/afw/*.jpg:databases/helen/trainset/*.jpg'
    
    # Track the train process and evaluate the current checkpoint against the validation set
    python mdm_eval.py --dataset_path="./databases/ibug/*.jpg" --num_examples=135 --eval_dir=ckpt/eval_ibug  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    python mdm_eval.py --dataset_path="./databases/lfpw/testset/*.png" --num_examples=300 --eval_dir=ckpt/eval_lfpw  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    python mdm_eval.py --dataset_path="./databases/helen/testset/*.jpg" --num_examples=330 --eval_dir=ckpt/eval_helen  --device='/cpu:0' --checkpoint_dir=$PWD/ckpt/train
    
    # Run tensorboard to visualise the results
    tensorboard --logdir==$PWD/ckpt
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022