Repository to run object detection on a model trained on an autonomous driving dataset.

Overview

Autonomous Driving Object Detection on the Raspberry Pi 4

Description of Repository

This repository contains code and instructions to configure the necessary hardware and software for running autonomous driving object detection on the Raspberry Pi 4!

Details of Software and Neural Network Model for Object Detection:

  • Language: Python
  • Framework: TensorFlow Lite
  • Network: SSD MobileNet-V2
  • Training Dataset:Berkely Deep Drive (BBD100K)

The motivation for the Project

The goal of this project was to train a neural network to detect things on the road that an autonomous driving vehicle would see (eg. bus, traffic light, traffic sign, person, bike, truck, motor, car, train, rider). Then to test the trained network on lightweight hardware (i.e. Raspberry PI 4) to see how it performs in terms of processing speed and detection accuracy.

Additional Resources

Source

Reference for Source Code for the Project: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md

Special thanks to Evan from EdjeElectronics for the instructions and the majority of the code used in this project! :)

Results

Vehicle Testing Configuration

Core

  • Raspberry Pi 4 GB
  • Raspberry Pi 5MP Camera (rev 1.3)

Other

  • LED
  • 470 Ohm Resistor
  • Small breadboard
  • GPIO push button
  • 3.5 Amp USB-C Power Supply

This tissue box setup isn't the greatest, but it's what I used to mount the PI on the dashboard of my car. I then used the USB-C cable plugged into the AC outlet of my car while I drove around to record and process footage.

Issues

1.) If you get an error when trying to run the program showing the following:

ImportError: No module named cv2

Try using this tutorial to install and build opencv: https://pimylifeup.com/raspberry-pi-opencv/ The software setup steps should install OpenCV, but sometimes installing it on the Raspberry Pi can be finicky.

Setting Up Software

1.) Clone Repository:

git clone https://github.com/ecd1012/rpi_road_object_detection.git

2.) Change directory to source code:

cd rpi_road_object_detection

3.) Open command prompt and make sure pi is up to date:

sudo apt-get update && sudo apt-get upgrade

4.) Install virtual environment:

sudo pip3 install virtualenv

5.) Make virtual environment:

python3.7 -m venv TFLite-venv

6.) Activate Environment:

source TFLite-venv/bin/activate

7.) Install the dependencies:

bash get_py_requirements.sh

8.) Make sure the camera module is enabled:

sudo raspi-config

9.) Go to Intercae Options and make sure the Pi Camera is enabled.

Setting Up Hardware

10.) Connect a push button to GPIO pin 17. This will be used as input.

Help: https://www.youtube.com/watch?v=BWYy3qZ315U&ab_channel=O%27Reilly

11.) Connect an LED to GPIO PIN 4. This LED will turn on to indicate when the program is running. Make sure you use a resistor with the LED!

Help: https://www.youtube.com/watch?v=3TDJ4FmtGgk&ab_channel=O%27Reilly

12.) Connect Pi Camera Module to Raspberry Pi. Help: https://www.youtube.com/watch?v=0hrF8Wq8SSQ&ab_channel=BINARYUPDATES

Running Detection

15.) After all your hardware and software is configured correctly run the following command:

python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Where the --output_path you specify is where you want images saved.

16.) The script will start running and wait for you to press the GPIO input button to start processing the video feed from the camera. Once you press the button, the green LED will turn on and the pi will start feeding and processing the video stream through the neural network. Processed images will be saved to the '--output_path' you specified over the command line.

17.) If you like, make a video out of the images. You can do this with gif making software, video making software, or ffmpeg. Help: https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg

18.) Enjoy!! :)

Running on Boot

19.) If you want to start running the python script on boot, do the following:

nano ~/.bashrc

And add the following to the end of your .bashrc

#Change directories to where you cloned the repo
cd ~/rpi_road_object_detection
source TFLite-venv/bin/activate
python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Then press CTRL+X and Press Y and enter to save.

Owner
Ethan
Personal Site: https://ethandell.tech/
Ethan
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023