Repository to run object detection on a model trained on an autonomous driving dataset.

Overview

Autonomous Driving Object Detection on the Raspberry Pi 4

Description of Repository

This repository contains code and instructions to configure the necessary hardware and software for running autonomous driving object detection on the Raspberry Pi 4!

Details of Software and Neural Network Model for Object Detection:

  • Language: Python
  • Framework: TensorFlow Lite
  • Network: SSD MobileNet-V2
  • Training Dataset:Berkely Deep Drive (BBD100K)

The motivation for the Project

The goal of this project was to train a neural network to detect things on the road that an autonomous driving vehicle would see (eg. bus, traffic light, traffic sign, person, bike, truck, motor, car, train, rider). Then to test the trained network on lightweight hardware (i.e. Raspberry PI 4) to see how it performs in terms of processing speed and detection accuracy.

Additional Resources

Source

Reference for Source Code for the Project: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md

Special thanks to Evan from EdjeElectronics for the instructions and the majority of the code used in this project! :)

Results

Vehicle Testing Configuration

Core

  • Raspberry Pi 4 GB
  • Raspberry Pi 5MP Camera (rev 1.3)

Other

  • LED
  • 470 Ohm Resistor
  • Small breadboard
  • GPIO push button
  • 3.5 Amp USB-C Power Supply

This tissue box setup isn't the greatest, but it's what I used to mount the PI on the dashboard of my car. I then used the USB-C cable plugged into the AC outlet of my car while I drove around to record and process footage.

Issues

1.) If you get an error when trying to run the program showing the following:

ImportError: No module named cv2

Try using this tutorial to install and build opencv: https://pimylifeup.com/raspberry-pi-opencv/ The software setup steps should install OpenCV, but sometimes installing it on the Raspberry Pi can be finicky.

Setting Up Software

1.) Clone Repository:

git clone https://github.com/ecd1012/rpi_road_object_detection.git

2.) Change directory to source code:

cd rpi_road_object_detection

3.) Open command prompt and make sure pi is up to date:

sudo apt-get update && sudo apt-get upgrade

4.) Install virtual environment:

sudo pip3 install virtualenv

5.) Make virtual environment:

python3.7 -m venv TFLite-venv

6.) Activate Environment:

source TFLite-venv/bin/activate

7.) Install the dependencies:

bash get_py_requirements.sh

8.) Make sure the camera module is enabled:

sudo raspi-config

9.) Go to Intercae Options and make sure the Pi Camera is enabled.

Setting Up Hardware

10.) Connect a push button to GPIO pin 17. This will be used as input.

Help: https://www.youtube.com/watch?v=BWYy3qZ315U&ab_channel=O%27Reilly

11.) Connect an LED to GPIO PIN 4. This LED will turn on to indicate when the program is running. Make sure you use a resistor with the LED!

Help: https://www.youtube.com/watch?v=3TDJ4FmtGgk&ab_channel=O%27Reilly

12.) Connect Pi Camera Module to Raspberry Pi. Help: https://www.youtube.com/watch?v=0hrF8Wq8SSQ&ab_channel=BINARYUPDATES

Running Detection

15.) After all your hardware and software is configured correctly run the following command:

python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Where the --output_path you specify is where you want images saved.

16.) The script will start running and wait for you to press the GPIO input button to start processing the video feed from the camera. Once you press the button, the green LED will turn on and the pi will start feeding and processing the video stream through the neural network. Processed images will be saved to the '--output_path' you specified over the command line.

17.) If you like, make a video out of the images. You can do this with gif making software, video making software, or ffmpeg. Help: https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg

18.) Enjoy!! :)

Running on Boot

19.) If you want to start running the python script on boot, do the following:

nano ~/.bashrc

And add the following to the end of your .bashrc

#Change directories to where you cloned the repo
cd ~/rpi_road_object_detection
source TFLite-venv/bin/activate
python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Then press CTRL+X and Press Y and enter to save.

Owner
Ethan
Personal Site: https://ethandell.tech/
Ethan
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022