Repository to run object detection on a model trained on an autonomous driving dataset.

Overview

Autonomous Driving Object Detection on the Raspberry Pi 4

Description of Repository

This repository contains code and instructions to configure the necessary hardware and software for running autonomous driving object detection on the Raspberry Pi 4!

Details of Software and Neural Network Model for Object Detection:

  • Language: Python
  • Framework: TensorFlow Lite
  • Network: SSD MobileNet-V2
  • Training Dataset:Berkely Deep Drive (BBD100K)

The motivation for the Project

The goal of this project was to train a neural network to detect things on the road that an autonomous driving vehicle would see (eg. bus, traffic light, traffic sign, person, bike, truck, motor, car, train, rider). Then to test the trained network on lightweight hardware (i.e. Raspberry PI 4) to see how it performs in terms of processing speed and detection accuracy.

Additional Resources

Source

Reference for Source Code for the Project: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md

Special thanks to Evan from EdjeElectronics for the instructions and the majority of the code used in this project! :)

Results

Vehicle Testing Configuration

Core

  • Raspberry Pi 4 GB
  • Raspberry Pi 5MP Camera (rev 1.3)

Other

  • LED
  • 470 Ohm Resistor
  • Small breadboard
  • GPIO push button
  • 3.5 Amp USB-C Power Supply

This tissue box setup isn't the greatest, but it's what I used to mount the PI on the dashboard of my car. I then used the USB-C cable plugged into the AC outlet of my car while I drove around to record and process footage.

Issues

1.) If you get an error when trying to run the program showing the following:

ImportError: No module named cv2

Try using this tutorial to install and build opencv: https://pimylifeup.com/raspberry-pi-opencv/ The software setup steps should install OpenCV, but sometimes installing it on the Raspberry Pi can be finicky.

Setting Up Software

1.) Clone Repository:

git clone https://github.com/ecd1012/rpi_road_object_detection.git

2.) Change directory to source code:

cd rpi_road_object_detection

3.) Open command prompt and make sure pi is up to date:

sudo apt-get update && sudo apt-get upgrade

4.) Install virtual environment:

sudo pip3 install virtualenv

5.) Make virtual environment:

python3.7 -m venv TFLite-venv

6.) Activate Environment:

source TFLite-venv/bin/activate

7.) Install the dependencies:

bash get_py_requirements.sh

8.) Make sure the camera module is enabled:

sudo raspi-config

9.) Go to Intercae Options and make sure the Pi Camera is enabled.

Setting Up Hardware

10.) Connect a push button to GPIO pin 17. This will be used as input.

Help: https://www.youtube.com/watch?v=BWYy3qZ315U&ab_channel=O%27Reilly

11.) Connect an LED to GPIO PIN 4. This LED will turn on to indicate when the program is running. Make sure you use a resistor with the LED!

Help: https://www.youtube.com/watch?v=3TDJ4FmtGgk&ab_channel=O%27Reilly

12.) Connect Pi Camera Module to Raspberry Pi. Help: https://www.youtube.com/watch?v=0hrF8Wq8SSQ&ab_channel=BINARYUPDATES

Running Detection

15.) After all your hardware and software is configured correctly run the following command:

python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Where the --output_path you specify is where you want images saved.

16.) The script will start running and wait for you to press the GPIO input button to start processing the video feed from the camera. Once you press the button, the green LED will turn on and the pi will start feeding and processing the video stream through the neural network. Processed images will be saved to the '--output_path' you specified over the command line.

17.) If you like, make a video out of the images. You can do this with gif making software, video making software, or ffmpeg. Help: https://stackoverflow.com/questions/24961127/how-to-create-a-video-from-images-with-ffmpeg

18.) Enjoy!! :)

Running on Boot

19.) If you want to start running the python script on boot, do the following:

nano ~/.bashrc

And add the following to the end of your .bashrc

#Change directories to where you cloned the repo
cd ~/rpi_road_object_detection
source TFLite-venv/bin/activate
python TFLite_detection_webcam_loop.py --modeldir=TFLite_model_bbd --output_path=processed_images

Then press CTRL+X and Press Y and enter to save.

Owner
Ethan
Personal Site: https://ethandell.tech/
Ethan
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022