Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Overview

Code Artifacts

Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Demos

Testbed

Real-world Environment

Virtual Environment (Unity)

Sim2Real and Real2Sim translations by CycleGAN

Self-driving cars

The same DNN model deployed on a real-world electric vehicle and in a virtual simulated world

Visual Odometry

Real-time XTE predictions in the real-world with visual odometry

Corruptions (left) and Adversarial Examples (right)

Requisites

Python3, git 64 bit, miniconda 3.7 64 bit. To modify the simulator (optional): Unity 2019.3.0f1

Software setup: We adopted the PyCharm Professional 2020.3, a Python IDE by JetBrains, and Python 3.7.

Hardware setup: Training the DNN models (self-driving cars) and CycleGAN on our datasets is computationally expensive. Therefore, we recommend using a machine with a GPU. In our setting, we ran our experiments on a machine equipped with a AMD Ryzen 5 processor, 8 GB of memory, and an NVIDIA GPU GeForce RTX 2060 with 6 GB of dedicated memory. Our trained models are available here.

Donkey Car

We used Donkey Car v. 3.1.5. Make sure you correctly install the donkey car software, the necessary simulator software and our simulator (macOS only).

* git clone https://github.com/autorope/donkeycar.git
* git checkout a91f88d
* conda env remove -n donkey
* conda env create -f install/envs/mac.yml
* conda activate donkey
* pip install -e .\[pc\]

XTE Predictor for real-world driving images

Data collection for a XTE predictor must be collected manually (or our datasets can be used). Alternatively, data can be collected by:

  1. Launching the Simulator.
  2. Selecting a log directory by clicking the 'log dir' button
  3. Selecting a preferred resolution (default is 320x240)
  4. Launching the Sanddbox Track scene and drive the car with the 'Joystick/Keyboard w Rec' button
  5. Driving the car

This will generate a dataset of simulated images and respective XTEs (labels). The simulated images have then to be converted using a CycleGAN network trained to do sim2real translation.

Once the dataset of converted images and XTEs is collected, use the train_xte_predictor.py notebook to train the xte predictor.

Self-Driving Cars

Manual driving

Connection

Donkey Car needs a static IP so that we can connect onto the car

ssh jetsonnano@
   
    
Pwd: 
    

    
   

Joystick Pairing

ds4drv &

PS4 controller: press PS + share and hold; starts blinking and pairing If [error][bluetooth] Unable to connect to detected device: Failed to set operational mode: [Errno 104] Connection reset by peer Try again When LED is green, connection is ok

python manage.py drive —js  // does not open web UI
python manage.py drive  // does open web UI for settiong a maximum throttle value

X -> E-Stop (negative acceleration) Share -> change the mode [user, local, local_angle]

Enjoy!

press PS and hold for 10 s to turn it off

Training

python train.py --model 
   
    .h5 --tub 
     --type 
     
       --aug

     
   

Testing (nominal conditions)

For autonomus driving:

python manage.py drive --model [models/
   
    ]

   

Go to: http://10.21.13.35:8887/drive Select “Local Pilot (d)”

Testing (corrupted conditions)

python manage.py drive --model [models/
   
    ] [--corruption=
    
     ] [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   

Testing (adversarial conditions)

python manage.py drive --model [models/
   
    ] [--useadversarial] [--advimage=
    
     ]  [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   
Owner
Andrea Stocco
PostDoctoral researcher in Software Engineering. My interests concern devising techniques for testing web- and AI-based software systems.
Andrea Stocco
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023