Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Overview

Tutoriais Públicos

GitHub last commit

Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Os tutoriais são publicados principalmente no Instagram e Linkedin da Trading com Dados. Este repositório serve, portanto, como um repositório de conteúdo para quem deseja de forma simples e direta encontrar os códigos produzidos para estes tutoriais.

Faremos o possível para manter esse repositório atualizado e contendo todos os tutoriais de conteúdo que desenvolvemos para nossas redes sociais. No entanto, não podemos garantir que a totalidade do conteúdo estará disponível aqui.

A maior parte dos códigos tem como nome aqui no GitHub o mesmo título do conteúdo no Instagram. Se o nome não for o mesmo, haverá pelo menos similaridade no que está descrito aqui com o título no Instagram.

A forma mais fácil de encontrar os códigos é através do ID presente depois do nome do código, que na verdade é apenas a data quando o código foi postado na seguinte sequência: ano, mês e dia, tudo junto. Exemplo: código criado no dia 03 de janeiro de 2022 possui como ID 20220103.

Atenção: Os códigos desenvolvidos para o canal do YouTube estão em um outro repositório. Para visitá-lo, clique aqui.

REPOSITÓRIO EM CONSTRUÇÃO

2021

  1. Como obter dados de ações em 5 simples passos (2021)
  2. Comece a programar em Python em 1 minuto (2021)
  3. Seu primeiro gráfico de candle no Python em 1 minuto (2021)
  4. Matriz de correlação entre ativos no Python em 5 minutos (2021)
  5. Visualize vários ativos no mesmo gráfico no Python em 5 minutos (2021)
  6. Compare a sua carteira com o IBOV em 5 minutos (20210824)
  7. Obtendo dados de dividendos (20210904)
  8. Matriz de risco vs. retorno no Python (20210919)
  9. Como obter dados de ações no Python (ou ETFs, FIIs, BDRs, cripto, dólar) (20210815)
  10. Compare sua carteira com o CDI (20210904)
  11. Como criar médias móveis simples no Python em 5 minutos (20211105)
  12. Visualize as 7 maiores criptos no Python em 5 minutos (20221108)
  13. Capture a cotação do mini-índice com tempo real no Python utilizando o Metatrader (20211110)
  14. Estudo de caso MGLU (20211208)
  15. Sua carteira bate o dólar? Faça a comparação no Python em 5 minutos (20211209)

2022

  1. Obtenha dados de criptomoedas com Python em menos de 5 minutos (20220103)
  2. Comparação entre carteiras (20220201)
  3. Tutorial sobre Quantstats (20220218)
  4. Descubra os investidores institucionais de um papel com o Python
  5. Você está comparando ativos da forma correta?
  6. Comece a programar em Python em 1 minuto (incluindo gráfico interativo de candle)
  7. Ciclos de Mercado: avaliando a sazonalidade anual do IBOV (20220330)
  8. Spread ações ON/PN: exemplo com PETR3 e PETR4 (20220406)
  9. Maiores crises econômicas pós guerras mundiais em diferentes escalas gráficas (20220423)
Owner
Trading com Dados
Edtech focused on teaching Quantitative Finance and Data Science for Financial Markets.
Trading com Dados
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022