🔀⏳ Easy throttling with asyncio support

Overview

Throttler

Python PyPI License: MIT

Build Status codecov Codacy Badge

Zero-dependency Python package for easy throttling with asyncio support.

Demo

📝 Table of Contents

🎒 Install

Just

pip install throttler

🛠 Usage Examples

All run-ready examples are here.

Throttler and ThrottlerSimultaneous

Throttler:

Context manager for limiting rate of accessing to context block.

from throttler import Throttler

# Limit to three calls per second
t = Throttler(rate_limit=3, period=1.0)
async with t:
    pass

Or

import asyncio

from throttler import throttle

# Limit to three calls per second
@throttle(rate_limit=3, period=1.0)
async def task():
    return await asyncio.sleep(0.1)

ThrottlerSimultaneous:

Context manager for limiting simultaneous count of accessing to context block.

from throttler import ThrottlerSimultaneous

# Limit to five simultaneous calls
t = ThrottlerSimultaneous(count=5)
async with t:
    pass

Or

import asyncio

from throttler import throttle_simultaneous

# Limit to five simultaneous calls
@throttle_simultaneous(count=5)
async def task():
    return await asyncio.sleep(0.1)

Simple Example

import asyncio
import time

from throttler import throttle


# Limit to two calls per second
@throttle(rate_limit=2, period=1.0)
async def task():
    return await asyncio.sleep(0.1)


async def many_tasks(count: int):
    coros = [task() for _ in range(count)]
    for coro in asyncio.as_completed(coros):
        _ = await coro
        print(f'Timestamp: {time.time()}')

asyncio.run(many_tasks(10))

Result output:

Timestamp: 1585183394.8141203
Timestamp: 1585183394.8141203
Timestamp: 1585183395.830335
Timestamp: 1585183395.830335
Timestamp: 1585183396.8460555
Timestamp: 1585183396.8460555
...

API Example

import asyncio
import time

import aiohttp

from throttler import Throttler, ThrottlerSimultaneous


class SomeAPI:
    api_url = 'https://example.com'

    def __init__(self, throttler):
        self.throttler = throttler

    async def request(self, session: aiohttp.ClientSession):
        async with self.throttler:
            async with session.get(self.api_url) as resp:
                return resp

    async def many_requests(self, count: int):
        async with aiohttp.ClientSession() as session:
            coros = [self.request(session) for _ in range(count)]
            for coro in asyncio.as_completed(coros):
                response = await coro
                print(f'{int(time.time())} | Result: {response.status}')


async def run():
    # Throttler can be of any type
    t = ThrottlerSimultaneous(count=5)        # Five simultaneous requests
    t = Throttler(rate_limit=10, period=3.0)  # Ten requests in three seconds

    api = SomeAPI(t)
    await api.many_requests(100)

asyncio.run(run())

Result output:

1585182908 | Result: 200
1585182908 | Result: 200
1585182908 | Result: 200
1585182909 | Result: 200
1585182909 | Result: 200
1585182909 | Result: 200
1585182910 | Result: 200
1585182910 | Result: 200
1585182910 | Result: 200
...

ExecutionTimer

Context manager for time limiting of accessing to context block. Simply sleep period secs before next accessing, not analog of Throttler. Also it can align to start of minutes.

import time

from throttler import ExecutionTimer

et = ExecutionTimer(60, align_sleep=True)

while True:
    with et:
        print(time.asctime(), '|', time.time())

Or

import time

from throttler import execution_timer

@execution_timer(60, align_sleep=True)
def f():
    print(time.asctime(), '|', time.time())

while True:
    f()

Result output:

Thu Mar 26 00:56:17 2020 | 1585173377.1203406
Thu Mar 26 00:57:00 2020 | 1585173420.0006166
Thu Mar 26 00:58:00 2020 | 1585173480.002517
Thu Mar 26 00:59:00 2020 | 1585173540.001494

Timer

Context manager for pretty printing start, end, elapsed and average times.

import random
import time

from throttler import Timer

timer = Timer('My Timer', verbose=True)

for _ in range(3):
    with timer:
        time.sleep(random.random())

Or

import random
import time

from throttler import timer

@timer('My Timer', verbose=True)
def f():
    time.sleep(random.random())

for _ in range(3):
    f()

Result output:

#1 | My Timer | begin: 2020-03-26 01:46:07.648661
#1 | My Timer |   end: 2020-03-26 01:46:08.382135, elapsed: 0.73 sec, average: 0.73 sec
#2 | My Timer | begin: 2020-03-26 01:46:08.382135
#2 | My Timer |   end: 2020-03-26 01:46:08.599919, elapsed: 0.22 sec, average: 0.48 sec
#3 | My Timer | begin: 2020-03-26 01:46:08.599919
#3 | My Timer |   end: 2020-03-26 01:46:09.083370, elapsed: 0.48 sec, average: 0.48 sec

👨🏻‍💻 Author

Ramzan Bekbulatov:

💬 Contributing

Contributions, issues and feature requests are welcome!

📝 License

This project is MIT licensed.

You might also like...
asyncio (PEP 3156) Redis support

aioredis asyncio (PEP 3156) Redis client library. Features hiredis parser Yes Pure-python parser Yes Low-level & High-level APIs Yes Connections Pool

File support for asyncio

aiofiles: file support for asyncio aiofiles is an Apache2 licensed library, written in Python, for handling local disk files in asyncio applications.

Pytest support for asyncio.

pytest-asyncio: pytest support for asyncio pytest-asyncio is an Apache2 licensed library, written in Python, for testing asyncio code with pytest. asy

Tortoise ORM is an easy-to-use asyncio ORM  inspired by Django.
Tortoise ORM is an easy-to-use asyncio ORM inspired by Django.

Tortoise ORM was build with relations in mind and admiration for the excellent and popular Django ORM. It's engraved in it's design that you are working not with just tables, you work with relational data.

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Free and Open Source Group Voice chat music player for telegram ❤️ with button support youtube playback support
Free and Open Source Group Voice chat music player for telegram ❤️ with button support youtube playback support

Free and Open Source Group Voice chat music player for telegram ❤️ with button support youtube playback support

As easy as /aitch-tee-tee-pie/ 🥧 Modern, user-friendly command-line HTTP client for the API era. JSON support, colors, sessions, downloads, plugins & more. https://twitter.com/httpie
As easy as /aitch-tee-tee-pie/ 🥧 Modern, user-friendly command-line HTTP client for the API era. JSON support, colors, sessions, downloads, plugins & more. https://twitter.com/httpie

HTTPie: human-friendly CLI HTTP client for the API era HTTPie (pronounced aitch-tee-tee-pie) is a command-line HTTP client. Its goal is to make CLI in

Easy and comprehensive assessment of predictive power, with support for neuroimaging features
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Easy-to-use data handling for SQL data stores with support for implicit table creation, bulk loading, and transactions.

dataset: databases for lazy people In short, dataset makes reading and writing data in databases as simple as reading and writing JSON files. Read the

As easy as /aitch-tee-tee-pie/ 🥧 Modern, user-friendly command-line HTTP client for the API era. JSON support, colors, sessions, downloads, plugins & more. https://twitter.com/httpie
As easy as /aitch-tee-tee-pie/ 🥧 Modern, user-friendly command-line HTTP client for the API era. JSON support, colors, sessions, downloads, plugins & more. https://twitter.com/httpie

HTTPie: human-friendly CLI HTTP client for the API era HTTPie (pronounced aitch-tee-tee-pie) is a command-line HTTP client. Its goal is to make CLI in

FastAPI extension that provides JWT Auth support (secure, easy to use, and lightweight)

FastAPI JWT Auth Documentation: https://indominusbyte.github.io/fastapi-jwt-auth Source Code: https://github.com/IndominusByte/fastapi-jwt-auth Featur

Easy-to-use data handling for SQL data stores with support for implicit table creation, bulk loading, and transactions.

dataset: databases for lazy people In short, dataset makes reading and writing data in databases as simple as reading and writing JSON files. Read the

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries. An example o

一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing

The pytest framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries. An example o

Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.
Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Easy and secure implementation of Azure AD for your FastAPI APIs 🔒 Single- and multi-tenant support.

Ultra fast asyncio event loop.
Ultra fast asyncio event loop.

uvloop is a fast, drop-in replacement of the built-in asyncio event loop. uvloop is implemented in Cython and uses libuv under the hood. The project d

A curated list of awesome Python asyncio frameworks, libraries, software and resources

Awesome asyncio A carefully curated list of awesome Python asyncio frameworks, libraries, software and resources. The Python asyncio module introduced

Comments
  • from source installation fails because `readme.md` is missing

    from source installation fails because `readme.md` is missing

    I'm running into the following when using pip install using the source tarball for throttle 0.2.2 obtained from PyPI:

        Running command python setup.py egg_info
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/tmp/eb-pc17jo6j/pip-req-build-o1s1r0pd/setup.py", line 43, in <module>
            long_description=read('readme.md'),
          File "/tmp/eb-pc17jo6j/pip-req-build-o1s1r0pd/setup.py", line 10, in read
            with open(filename, encoding='utf-8') as file:
        FileNotFoundError: [Errno 2] No such file or directory: 'readme.md'
    WARNING: Discarding file:///tmp/vsc40023/easybuild_build/snakemake/7.18.2/foss-2021b/throttler/throttler-1.2.1. Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
    ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
    

    The problem is that readme.md is not included in the source tarball.

    opened by boegel 5
Releases(v1.2.2)
Owner
Ramzan Bekbulatov
Software Engineer
Ramzan Bekbulatov
Easy and secure implementation of Azure AD for your FastAPI APIs 🔒

FastAPI-Azure-auth Azure AD Authentication for FastAPI apps made easy. 🚀 Description FastAPI is a modern, fast (high-performance), web framework for

Intility 216 Dec 27, 2022
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as a REST API Endpoint.

Jupter Notebook REST API Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as

Invictify 54 Nov 04, 2022
Keepalive - Discord Bot to keep threads from expiring

keepalive Discord Bot to keep threads from expiring Installation Create a new Di

Francesco Pierfederici 5 Mar 14, 2022
Keycloack plugin for FastApi.

FastAPI Keycloack Keycloack plugin for FastApi. Your aplication receives the claims decoded from the access token. Usage Run keycloak on port 8080 and

Elber 4 Jun 24, 2022
✨️🐍 SPARQL endpoint built with RDFLib to serve machine learning models, or any other logic implemented in Python

✨ SPARQL endpoint for RDFLib rdflib-endpoint is a SPARQL endpoint based on a RDFLib Graph to easily serve machine learning models, or any other logic

Vincent Emonet 27 Dec 19, 2022
A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits

A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits Install You can install this Library with: pip instal

Tert0 33 Nov 28, 2022
Opinionated authorization package for FastAPI

FastAPI Authorization Installation pip install fastapi-authorization Usage Currently, there are two models available: RBAC: Role-based Access Control

Marcelo Trylesinski 18 Jul 04, 2022
User authentication fastapi with python

user-authentication-fastapi Authentication API Development Setup environment You should create a virtual environment and activate it: virtualenv venv

Sabir Hussain 3 Mar 03, 2022
FastAPI-PostgreSQL-Celery-RabbitMQ-Redis bakcend with Docker containerization

FastAPI - PostgreSQL - Celery - Rabbitmq backend This source code implements the following architecture: All the required database endpoints are imple

Juan Esteban Aristizabal 54 Nov 26, 2022
Signalling for FastAPI.

fastapi-signals Signalling for FastAPI.

Henshal B 7 May 04, 2022
A comprehensive CRUD API generator for SQLALchemy.

FastAPI Quick CRUD Introduction Advantage Constraint Getting started Installation Usage Design Path Parameter Query Parameter Request Body Upsert Intr

192 Jan 06, 2023
This repository contains learning resources for Python Fast API Framework and Docker

This repository contains learning resources for Python Fast API Framework and Docker, Build High Performing Apps With Python BootCamp by Lux Academy and Data Science East Africa.

Harun Mbaabu Mwenda 23 Nov 20, 2022
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
A Python framework to build Slack apps in a flash with the latest platform features.

Bolt for Python A Python framework to build Slack apps in a flash with the latest platform features. Read the getting started guide and look at our co

SlackAPI 684 Jan 09, 2023
An extension library for FastAPI framework

FastLab An extension library for FastAPI framework Features Logging Models Utils Routers Installation use pip to install the package: pip install fast

Tezign Lab 10 Jul 11, 2022
FastAPI with Docker and Traefik

Dockerizing FastAPI with Postgres, Uvicorn, and Traefik Want to learn how to build this? Check out the post. Want to use this project? Development Bui

51 Jan 06, 2023
Redis-based rate-limiting for FastAPI

Redis-based rate-limiting for FastAPI

Glib 6 Nov 14, 2022
Farlimit - FastAPI rate limit with python

FastAPIRateLimit Contributing is F&E (free&easy) Y Usage pip install farlimit N

omid 27 Oct 06, 2022
Ansible Inventory Plugin, created to get hosts from HTTP API.

ansible-ws-inventory-plugin Ansible Inventory Plugin, created to get hosts from HTTP API. Features: Database compatible with MongoDB and Filesystem (J

Carlos Neto 0 Feb 05, 2022